首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations at the CCSD(T) level of theory were performed to characterize the Ar + CF4 intermolecular potential. Potential energy curves were calculated with the aug-cc-pVTZ basis set, and with and without a correction for basis set superposition error (BSSE). Additional calculations were performed with other correlation consistent basis sets to extrapolate the Ar-CF4 potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF4 potential. Calculations with the aug-cc-pVTZ basis set, and with a BSSE correction, appear to give a good representation of the BSSE corrected potential at the CBS limit. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two model analytic potential energy functions were determined for Ar + CF4. One is a fit to the aug-cc-pVTZ calculations with a BSSE correction. The second was derived by fitting an average BSSE corrected potential, which is an average of the CCSD(T)/aug-cc-pVTZ potentials with and without a BSSE correction. These analytic functions are written as a sum of two-body potentials and excellent fits to the ab initio potentials are obtained by representing each two-body interaction as a Buckingham potential.  相似文献   

2.
We have calculated the thermochemical parameters for the reactions H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O and H(2)SO(4) + NH(3) <--> H(2)SO(4).NH(3) using the B3LYP and PW91 functionals, MP2 perturbation theory and four different basis sets. Different methods and basis sets yield very different results with respect to, for example, the reaction free energies. A large part, but not all, of these differences are caused by basis set superposition error (BSSE), which is on the order of 1-3 kcal mol(-1) for most method/basis set combinations used in previous studies. Complete basis set extrapolation (CBS) calculations using the cc-pV(X+d)Z and aug-cc-pV(X+d)Z basis sets (with X = D, T, Q) at the B3LYP level indicate that if BSSE errors of less than 0.2 kcal mol(-1) are desired in uncorrected calculations, basis sets of at least aug-cc-pV(T+d)Z quality should be used. The use of additional augmented basis functions is also shown to be important, as the BSSE error is significant for the nonaugmented basis sets even at the quadruple-zeta level. The effect of anharmonic corrections to the zero-point energies and thermal contributions to the free energy are shown to be around 0.4 kcal mol(-1) for the H(2)SO(4).H(2)O cluster at 298 K. Single-point CCSD(T) calculations for the H(2)SO(4).H(2)O cluster also indicate that B3LYP and MP2 calculations reproduce the CCSD(T) energies well, whereas the PW91 results are significantly overbinding. However, basis-set limit extrapolations at the CCSD(T) level indicate that the B3LYP binding energies are too low by ca. 1-2 kcal/mol. This probably explains the difference of about 2 kcal mol(-1) for the free energy of the H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O reaction between the counterpoise-corrected B3LYP calculations with large basis sets and the diffusion-based experimental values of S. M. Ball, D. R. Hanson, F. L Eisele and P. H. McMurry (J. Phys. Chem. A. 2000, 104, 1715). Topological analysis of the electronic charge density based on the quantum theory of atoms in molecules (QTAIM) shows that different method/basis set combinations lead to qualitatively different bonding patterns for the H(2)SO(4).NH(3) cluster. Using QTAIM analysis, we have also defined a proton transfer degree parameter which may be useful in further studies.  相似文献   

3.
The interaction potentials between immiscible polar and non-polar solvents are a major driving force behind the formation of liquid:liquid interfaces. In this work, the interaction energy of water-pentane dimer has been determined using coupled-cluster theory with single double (triple) excitations [CCSD(T)], 2nd order M?ller Plesset perturbation theory (MP2), density fitted local MP2 (DF-LMP2), as well as density functional theory using a wide variety of density functionals and several different basis sets. The M05-2X exchange correlation functionals exhibit excellent agreement with CCSD(T) and DF-LMP2 after taking into account basis set superposition error. The gas phase water-pentane interaction energy is found to be quite sensitive to the specific pentane isomer (2,2-dimethylpropane vs. n-pentane) and relative orientation of the monomeric constituents. Subsequent solution phase cluster calculations of 2,2-dimethylpropane and n-pentane solvated by water indicate a positive free energy of solvation that is in good agreement with available experimental data. Structural parameters are quite sensitive to the density functional employed and reflect differences in the two-body interaction energy calculated by each method. In contrast, cluster calculations of pentane solvation of H(2)O solute are found to be inadequate for describing the organic solvent, likely due to limitations associated with the functionals employed (B3LYP, BHandH, and M05-2X).  相似文献   

4.
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6) and C(6)H(6)) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n complete basis set calculations the prediction of nuclear shieldings at the CCSD(T) level of nearly similar accuracy as those, obtained by fitting results obtained from computationally demanding pcS-n calculations at the CCSD(T) limit. A significant saving of computational efforts can thus be achieved by scaling inexpensive CCSD(T)/aug-cc-pVTZ-J calculations of nuclear isotropic shieldings with affordable DFT complete basis set limit corrections.  相似文献   

5.
Accurate ab initio binding energies of alkaline earth metal clusters   总被引:1,自引:0,他引:1  
The effects of basis set superposition error (BSSE) and core-correlation on the electronic binding energies of alkaline earth metal clusters Y(n) (Y = Be, Mg, Ca; n = 2-4) at the Moller-Plesset second-order perturbation theory (MP2) and the single and double coupled cluster method with perturbative triples correction (CCSD(T)) levels are examined using the correlation consistent basis sets cc-pVXZ and cc-pCVXZ (X = D, T, Q, 5). It is found that, while BSSE has a negligible effect for valence-electron-only-correlated calculations for most basis sets, its magnitude becomes more pronounced for all-electron-correlated calculations, including core electrons. By utilizing the negligible effect of BSSE on the binding energies for valence-electron-only-correlated calculations, in combination with the negligible core-correlation effect at the CCSD(T) level, accurate binding energies of these clusters up to pentamers (octamers in the case of the Be clusters) are estimated via the basis set extrapolation of ab initio CCSD(T) correlation energies of the monomer and cluster with only the cc-pVDZ and cc-pVTZ sets, using the basis set and correlation-dependent extrapolation formula recently devised. A comparison between the CCSD(T) and density functional theory (DFT) binding energies is made to identify the most appropriate DFT method for the study of these clusters.  相似文献   

6.
An ab initio study of the stability, spectroscopic properties, and isomeric equilibrium of the hydrogen-bonded HCN...H2O and H2O...HCN isomers is presented. Density functional theory and perturbative second-order MP2 and coupled-cluster CCSD(T) calculations were carried out and binding energies obtained with correlation-consistent basis sets including extrapolation to the infinity basis set level. At the best theoretical level, CCSD(T), the H2O...HCN complex is more stable than the HCN...H2O complex by ca. 6.3 kJ mol(-1). Rotational and vibrational spectra, including anharmonic corrections, are calculated. These calculated spectroscopic data are used to obtain thermochemical contributions to the thermodynamic functions and hence the Gibbs free energy. The relative free energies are used to estimate the equilibrium constant for isomerism. We find that under typical conditions of supersonic expansion experiments (T < 150 K) H2O...HCN is essentially the only isomer present. Furthermore, our calculations indicate that the hydrogen-bonded cluster becomes favorable over the separated moieties at temperatures below 200 K.  相似文献   

7.
A global potential energy surface has been constructed for the system HgBr+Ar-->Hg+Br+Ar to determine temperature dependent rate constants for the collision-induced dissociation (CID) and recombination of Hg and Br atoms. The surface was decomposed using a many-body expansion. Accurate two-body potentials for HgBr, HgAr, and ArBr were calculated using coupled cluster theory with single and double excitations and a perturbative treatment of triple excitations [CCSD(T)], as well as the multireference averaged coupled pair functional method. Correlation consistent basis sets were used to extrapolate to the complete basis set limit and corrections were included to account for scalar and spin-orbit relativistic effects, core-valence correlation, and the Lamb shift. The three-body potential was computed with the CCSD(T) method and triple-zeta quality basis sets. Quasiclassical trajectories using the final analytical potential surface were directly carried out on the CID of HgBr by Ar for a large sampling of initial rotational, vibrational, and collision energies. The recombination rate of Hg and Br atoms is a likely first step in mercury depletion events that have been observed in the Arctic troposphere during polar sunrise. The effective second order rate constant for this process was determined in this work from the calculated CID rate as a function of temperature using the principle of detailed balance, which resulted in k(T) = 1.2 x 10(-12) cm(3) molecule(-1) s(-1) at 260 K and 1 bar pressure.  相似文献   

8.
The rate constants of the H‐abstraction reactions from cyclopropane by H, O (3P), Cl (2P3/2), and OH radicals have been calculated over the temperature range of 250?2500 K using two different levels of theory. Calculations of optimized geometrical parameters and vibrational frequencies are performed using the MP2 method combined with the cc‐pVTZ basis set and the 6–311++G(d,p) basis set. Single‐point energy calculations have been carried out with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (perturbatively) electron excitations CCSD(T) using either the cc‐pVTZ, aug‐cc‐pVTZ, and aug‐cc‐pVQZ basis sets or the 6–311++G(3df,3pd) basis set. The CCSD(T) calculated potential energies have been extrapolated to the complete basis limit (CBS) limit. The Full Configuration Interaction (FCI) energies have been also estimated using the continued‐fraction approximation as proposed by Goodson (J. Chem. Phys., 2002, 116, 6948–6956). Canonical transition‐state theory combined with an Eckart tunneling correction has been used to predict the rate constants as a function of temperature using two kinetic models (direct abstraction or complex mechanism) at two levels of theory (CCSD(T)‐cf/CBS//MP2/cc‐pVTZ and CCSD(T)‐cf/6–311++G(3df,3pd)//MP2/6–311++G(d,p)). The calculated kinetic parameters are in reasonable agreement with their literature counterparts for all reactions. In the light of these trends, the use of the Pople‐style basis sets for studying the reactivity of other systems such as larger cycloalkanes or halogenated cycloalkanes is recommended because the 6–311++G(3df,3pd) basis set is less time consuming than the aug‐cc‐pVQZ basis set. Based on our calculations performed at the CCSD(T)‐cf/CBS//MP2/cc‐pVTZ level of theory, the standard enthalpy of formation at 298 K for the cyclopropyl radical has been reassessed and its value is (290.5 ± 1.6) kJ mol?1.  相似文献   

9.
The results of ab initio calculations of two- and three-body dispersion coefficients for the four most important nucleic acid bases are reported. The isotropic as well as anisotropic coefficients were found by using the time-dependent Hartree-Fock approach and the aug-cc-pVDZ basis set. Single and double excitation coupled-cluster theory with noniterative treatment of triple excitations [CCSD(T)] was used to find the values of static polarizabilities which were subsequently used to estimate the values of the CCSD(T) dispersion coefficients. A comparison of these estimated CCSD(T) dispersion coefficients with coefficients found by using empirical approaches based on atomic contributions revealed that the latter are not reliable.  相似文献   

10.
A theoretical study has been made on six isomers of H2SO2 using coupled-cluster singles and doubles with noniterative triple excitations (CCSD(T)). The isomers studied are sulfoxylic acid (S(OH)2; C2 and Cs conformers), sulfinic acid (HS(=O)OH; 2 C1 conformers), dihydrogen sulfone (H2SO2; C2v), sulfhydryl hydroperoxide (HSOOH; C1), thiadioxirane (Cs), and dihydrogen persulfoxide (H2SOO; Cs). Molecular geometries, harmonic vibrational frequencies, and infrared intensities of all species were obtained using the CCSD(T) method and the 6-311++G(2d,2p) basis set. All aforementioned species were found to be local minima, with the exception of thiadioxirane, which has one imaginary frequency. A prior possible infrared observation of sulfinic acid was reassessed on the basis of the present data. In agreement with previous MP2 results, the present CCSD(T) data provide support for at most 4 of the 8 observed frequencies. The CCSD(T) frequencies and intensities should be of assistance in future identification of H2SO2 isomers by vibrational spectroscopy. Relative energies were calculated using the CCSD(T) method and several larger basis sets. As found previously, the lowest energy species is C2 S(OH)2, followed by Cs S(OH)2, HS(=O)OH, H2SO2, HSOOH, thiadioxirane, and H2SOO. Expanding the basis set significantly reduces the relative energies of HS(=O)OH and H2SO2. The CCSD(T) method was used with extended basis sets (up to aug-cc-pV(Q+d)Z) and basis set extrapolation in two reaction schemes to calculate the DeltaH degrees t (25 degrees C) of C2 S(OH)2. The two reaction schemes gave -285.8 and -282.7 kJ mol-1, which are quite close to a prior theoretical estimate (-290 kJ mol-1).  相似文献   

11.
We propose a new computational protocol to obtain highly accurate theoretical reference data. This protocol employs the explicitly correlated coupled-cluster method with iterative single and double excitations as well as perturbative triple excitations, CCSD(T)(F12), using quadruple-z\zeta basis sets. Higher excitations are accounted for by conventional CCSDT(Q) calculations using double-z\zeta basis sets, while core/core-valence correlation effects are estimated by conventional CCSD(T) calculations using quadruple-z\zeta basis sets. Finally, scalar-relativistic effects are accounted for by conventional CCSD(T) calculations using triple-z\zeta basis sets. In the present article, this protocol is applied to the popular test sets AE6 and BH6. An error analysis shows that the new reference values obtained by our computational protocol have an uncertainty of less than 1 kcal/mol (chemical accuracy). Furthermore, concerning the atomization energies, a cancellation of the basis set incompleteness error in the CCSD(T)(F12) perturbative triples contribution with the corresponding error in the contribution from higher excitations is observed. This error cancellation is diminished by the CCSD(T*)(F12) method. Thus, we recommend the use of the CCSD(T*)(F12) method only for small- and medium-sized basis sets, while the CCSD(T)(F12) approach is preferred for high-accuracy calculations in large basis sets.  相似文献   

12.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

13.
A series of density functional theory (DFT) and wave function theory (WFT) methods were used in conjunction with a series of basis sets to investigate the influence of the computational methodology on the relative energies of key intermediates and transition states in potential reaction pathways in ruthenium-silylene-catalyzed hydrosilylation reactions. A variety of DFT methods in a modest basis set and B3LYP calculations in a variety of basis sets calculated the key transition in the Glaser-Tilley (GT) pathway to be energetically favored. In contrast, with the smaller basis sets, the CCSD(T) method calculated the Chalk-Harrod (CH) pathway to be favored; however, CCSD(T) results extrapolated to larger basis sets favored the GT pathway.  相似文献   

14.
This work reports the development and testing of an automated algorithm for estimating the energies of weakly bound molecular clusters employing correlated theory. Firstly, the monomers and dimers of (homo/hetero) clusters are identified, and the sum of one-body and two-body contributions to correlation energy is calculated. The addition of this contribution to the Hartree-Fock full calculation (FC) energies provides a good estimate of the total energies at Møller–Plesset second-order perturbation theory (MP2)/coupled-cluster method with singles and doubles (CCSD) (T)-level theory using augmented Dunning basis sets. The estimated energies for several test clusters show an excellent agreement with their FC counterparts, with a substantial wall-clock time saving employing off-the-shelf hardware. Furthermore, the complete basis set (CBS) limit for MP2 energy computed using the two-body approach also agrees with its CBS energy with its FC counterpart.  相似文献   

15.
A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T)), with affordable pcS‐2 basis set and corresponding complete basis set results, estimated from calculations with the family of polarization‐consistent pcS‐n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and shieldings obtained with the significantly smaller basis sets pcS‐2 and aug‐cc‐pVTZ‐J for the selected set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS‐2, MP2/pcS‐2 and DFT/CBS calculations with pcS‐n basis sets. The proposed method leads to a fairly accurate estimation of nuclear magnetic shieldings and considerable saving of computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Compared to the correlation-consistent basis sets, it is not known if polarization-consistent pc-n basis sets, which were initially developed for HF and DFT calculations, can provide a monotonic and faster convergence toward the basis-set limit for results at correlated levels as well as better accuracy for a similar number of basis functions. It is also not known whether the pc-n basis sets can compute second derivatives of energy, such as nuclear magnetic shielding tensors, efficiently. To address these questions, the pc-n (n = 1-4), cc-pVxZ, and/or aug-cc-pVxZ (x = D, T, Q, 5, and 6) basis sets were used to compute the molecular and/or spectroscopic parameters of H2, H2O, and NH3 at the RHF, B3-LYP, MP2, and/or CCSD(T) levels of theory. The results show that compared to the cc-pVxZ and/or aug-cc-pVxZ basis sets the pc-n basis sets yield faster convergence toward the basis-set limit but equivalent molecular and/or spectroscopic parameters in the basis-set limit at the RHF, DFT, MP2, and CCSD(T) levels. Because the pc-n basis sets show faster convergence, fewer basis-set functions are needed to reach the accuracy obtained with the aug-cc-pVxZ basis sets, enabling faster calculations and less computer storage space. The results also show that the pc-n basis sets, in conjunction with the "locally dense" basis-set approach, could be applied to predict accurate parameters; thus, they could be used to estimate accurate molecular or spectroscopic properties (e.g., NMR parameters) for larger systems such as the active site of enzymes.  相似文献   

17.
Second-order M?ller-Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2), explicitly correlated MP2 (MP2-R12) calculations, and coupled-cluster calculations including all single and double excitations with a perturbative estimate of triple excitations [CCSD(T)] are performed to study the interaction of molecular hydrogen with the small molecules HF, H2O, NH3, and LiOH. Different adsorption positions are studied. In the cases of H2O and NH3, the most favorable configuration places H2 in an end-on fashion on the O or N atom, respectively. In the cases of HF and LiOH, the H2 molecule takes a side-on position on the H atom of HF or the Li atom. With respect to MP2 calculations in a triple-zeta basis, both the enlargement of the basis set and the extension of the correlation treatment (CCSD(T) vs MP2) increase the interaction energy. The basis set limit CCSD(T) estimates of the interaction energy of H2 with the HF, H2O, NH3, and LiOH molecules amount to 4.40, 2.67, 3.02, and 10.74 kJ mol-1, respectively. The interaction energy for the simultaneous interaction of H2 with two LiOH molecules does not significantly exceed the value obtained for the interaction with a single LiOH molecule. Furthermore, the interaction energies (by MP2) of H2 with glycine, the glycine dimer, and imidazolium chloride amount to 2.78, 5.00, and 6.30 kJ mol-1, respectively.  相似文献   

18.
 The nature and importance of nonadditive three-body interactions in the (H2O)2HCl cluster have been studied by the supermolecule coupled-cluster method and by symmetry-adapted perturbation theory (SAPT). The convergence of the SAPT expansion was tested by comparison with the results obtained from the supermolecule coupled-cluster calculations including single, double, and noniterative triple excitations [CCSD(T)]. It is shown that the SAPT results reproduce the converged CCSD(T) results within 3% at worst. The SAPT method has been used to analyze the three-body interactions for various geometries of the (H2O)2HCl cluster. It is shown that the induction nonadditivity is dominant, but it is partly quenched by the first-order Heitler–London-type exchange and higher-order exchange–induction/deformation terms. This implies that the classical induction term alone is not a reliable approximation to the nonadditive energy and that it will be difficult to approximate the three-body potential for (H2O)2HCl by a simple analytical expression. The three-body energy represents as much as 21–27% of the pair CCSD(T) intermolecular energy. Received: 15 September 1999 / Accepted: 3 February 2000 / Published online: 2 May 2000  相似文献   

19.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

20.
This letter revisits critical intermediates and transition states of the C2H3 + O2 reaction. To obtain their accurate relative energies, ab initio calculations are performed using sophisticated single and multireference theoretical methods with various basis sets. The energy difference between two crucial transition states, for ring opening in dioxiranylmethyl radical and its isomerization to C2H3OO, is calculated as approximately 2 kcal/mol both at multireference MRCI and at single-reference CCSD(T) levels extrapolated to the complete basis set limit. The deviation from the earlier G2M(RCC,MP2) value (approximately 7 kcal/mol) is caused by a deficiency of the 6-311+G(3df,2p) basis set as compared to correlation-consistent Dunning's basis sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号