首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
以自制的Gemini表面活性剂为软模版,硝酸锌为锌源、硫酸铜为铜源、硝酸镍为镍源,采用水热法制备Cu、Ni共掺杂ZnO。用XRD、SEM-EDX、UV-Vis DRS和PL对样品进行表征。以罗丹明B为模拟污染物,研究了水热时间,水热温度,煅烧时间,煅烧温度,Cu、Ni掺杂量对光催化性能的影响。结果表明:Cu和Ni均掺入到了ZnO晶格中,光催化实验表明,当水热时间8 h、水热温度130℃、煅烧温度500℃、煅烧时间3 h,0.8 mg·L-1的1.0% Cu-3.0% Ni/ZnO在250 W高压汞灯灯光照射90 min后对10 mg·L-1罗丹明B溶液的降解率达到96.9%。  相似文献   

2.
为提高ZnO催化剂光催化固氮性能,克服其光生电子-空穴复合率高、可见光响应能力差以及易光腐蚀等缺点,本研究采用Cu、C共负载方式对ZnO催化剂进行改性(以下简称CuCZ催化剂)。结果显示,CuCZ-3%(Cu占ZnO质量的3%)催化剂的光催化固氮速率最大,达到4.96 mmol·gcat-1·h-1,为ZnO(0.612 mmol·gcat-1·h-1)的8.10倍、CZnO(C负载ZnO,3.00 mmol·gcat-1·h-1)的1.65倍。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)以及电化学阻抗谱(EIS)对CuCZ催化剂进行表征以探究其光催化固氮效果提高的机理。结果表明,Cu、C共负载产生的界面电荷转移机制和C的"电子桥梁...  相似文献   

3.
花形ZnO纳米片微球的合成、表征及光催化性能   总被引:3,自引:2,他引:1  
以ZnCl2和尿素为原料,采用水热法合成了由纳米片组成的花形微球碱式碳酸锌前驱体,然后在300℃下煅烧0.5 h得到了形貌一致的ZnO产物。采用XRD、FTIR、TG、SEM、TEM、XPS对其进行表征,结果表明产物为六方纤维矿结构ZnO;组成3D花型微球的纳米片构筑单元厚度为10 nm,表面呈孔装结构,比表面积为72 m2.g-1。分别以花形ZnO纳米片、单分散ZnO纳米片和商用ZnO纳米颗粒为光催化剂,通过降解罗丹明B(Rh B)进行了光催化活性研究。结果表明,与商用ZnO纳米颗粒相比,水热法制备的花形ZnO纳米片显示了更好的光催化活性,可能是由于花形ZnO纳米片微球有较高的比表面积和3D花形形貌所致。  相似文献   

4.
以Zn(NO3)2·6H2O,Al(NO3)3·9H2O,Y(NO3)3·6H2O和Na OH为原料,采用溶液法制备了Al-Y共掺杂Zn O光催化剂(Al-Y/Zn O),并用X射线衍射(XRD)、扫描电镜(SEM)考察了Al,Y共掺杂对Zn O纳米棒形成及形貌的影响。结果表明,Al-Y共掺杂对Zn O晶粒大小基本没有影响,但会严重抑制Zn O纳米棒的生成,促使碱式硝酸锌(Zn5(OH)8(NO3)2·2H2O)的生成。以甲基橙(MO)为模型污染物考察了Al-Y共掺杂对Zn O纳米棒光催化活性的影响。结果发现,适量的Al-Y共掺杂会显著提高Zn O纳米棒的光催化活性。  相似文献   

5.
通过碱性水热-离子交换法制备了Cu、N共掺杂TiO2纳米管(Cu/N-TNT),对其光催化重整甘油制备合成气性能进行了研究。结果表明,Cu/N-TNT具有富含氧空位(Ov)的管状结构,N以Ti-N形式取代部分O形成杂质能级,Cu以Cu2+形式掺杂在催化剂晶格间隙和表面,Cu、N共掺杂促进TiO2表面电荷有效分离,有利于其光催化重整甘油制备合成气活性和选择性的提高。紫外光照射8h时,掺Cu量为0.15%的Cu/N-TNT催化剂上CO和H2产量分别为7.3和8.5 mmol·g-1,是原始TiO2的9.1和70.8倍,nH2/nCO从0.52提高为1.18,nCO/nCO2从0.21提高至0.42。Cu/N-TNT表面N和OV为醛类脱羰和甲酸脱水生成CO提供反应活性位点,Cu作为浅势阱提...  相似文献   

6.
水热合成Fe3+掺杂ZnO复合材料及其光催化活性   总被引:1,自引:0,他引:1  
以Zn(Ac)2·2H2O、Fe(NO3)3·9H2O和NaOH为原料,采用水热法合成了Fe3+掺杂ZnO复合材料. 并用X射线衍射和扫描电子显微镜测试技术对合成样品的结构和形貌进行了表征. 结果表明,Fe3+掺杂ZnO合成产物为直棒状,直径为500 nm,长度为3 μm左右. 样品的紫外可见漫反射分析结果表明,在300~500 nm紫外可见光区域均有强的吸收. Fe3+掺杂ZnO作为光催化剂降解有机染料性能优于纯ZnO材料.  相似文献   

7.
以硝酸锌、氯化铁等为原料,采用水热合成法制备不同比例Fe掺杂的ZnO光催化剂(Fe-ZnO)。通过X射线衍射(XRD)、扫描电镜(SEM)、拉曼散射(Raman)和紫外可见(UV-vis)漫反射光谱对样品的形貌、结构、相组成进行表征。结果表明,Fe已经掺入了ZnO晶格中;掺杂使光吸收带向红外区域扩展,提高可见光响应。BET测试发现Fe掺杂的ZnO材料具有很好的结构稳定性和相当高的比表面积,对Cr(VI)水溶液进行降解实验,结果显示Fe掺杂后ZnO具有较高的光催化活性和良好的稳定性。  相似文献   

8.
N-TiO_2/ZnO复合纳米管阵列的掺杂机理及其光催化活性   总被引:2,自引:0,他引:2  
以ZnO纳米柱阵列为模板,采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列.扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明:两种阵列的纳米管均为六角形结构,直径约为100nm,壁厚约为20nm;在N-TiO2/ZnO复合纳米管阵列中,掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面,仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置;表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化,增强了纳米管阵列的光吸收效率,促进了光生载流子的分离.光催化实验结果表明,N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

9.
通过共沉淀法优化制备了Fe_3O_4为内核的磁性核壳式Ce掺杂ZnO催化剂(Fe_3O_4@ZnO-Ce),考察催化剂的稳定性和适用性,利用SEM、BET、ICP-AES、XRD、UV-Vis DRS、VSM、FT-IR等手段对催化剂进行表征,研究温度、pH、催化剂投加量对罗丹明B降解率的影响。结果表明,Ce掺杂ZnO包覆在Fe_3O_4表面形成球状纳米颗粒,平均粒径约100 nm,Fe_3O_4和3%Ce掺杂ZnO最佳物质的量之比为1:20,400℃煅烧2 h。日光模拟灯为光源,在pH为7、水温30℃、催化剂投加量0.2 g/100 mL、90 min罗丹明B降解率达到92%,6次循环套用降解率达到53%以上。  相似文献   

10.
陈熙  李莉  张文治  宋强  李奕萱 《无机化学学报》2015,31(10):1971-1980
在不同的制备条件下,通过微波水热两步法获得了一系列Ag2S/ZnO光催化剂,采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见漫反射吸收光谱(UV-Vis/DRS)、扫描电子显微镜(SEM)和N2吸附-脱附等测试手段对产物结构和形貌进行了表征。结果表明,产物以六方纤锌矿ZnO为主,其晶型结构并未随着反应温度和Ag2S物质的量的增加而改变。Ag2S的引入显著增强了光催化剂在可见光区的吸收,使吸收边带发生红移,同时抑制了ZnO(001)晶面的生长。另外,所得产物的形貌随着Ag2S物质的量的增加从爆米花状转变为少量的柱体颗粒,且BET比表面积经过复合后明显减小。以罗丹明B为目标降解物,研究并比较了一系列Ag2S/ZnO光催化剂对罗丹明B的光降解性能。结果表明,nAg2S/nZnO=1:10时,光催化剂在紫外光、可见光和模拟日光的照射下具有最好的光催化效果,优于目前应用最广泛的市售P25。另外,所制备的光催化材料Ag2S/ZnO经4次循环使用后,其降解效率没有明显下降,表明该催化材料具有一定的光催化稳定性。经捕获实验研究发现,在Ag2S/ZnO的光催化反应中空穴起主要作用,并根据绝对电负性估算了复合材料Ag2S/ZnO的能带位置,据此提出了可能的光催化反应机理。  相似文献   

11.
纳米TiO2-ZnO复合材料的合成、结构与光催化性能   总被引:31,自引:0,他引:31       下载免费PDF全文
二氧化钛是一种重要的半导体光催化材料,它具有光催化降解有机物活性高、化学性质稳定、耐化学和光化学腐蚀以及无毒等特性,因而在污水处理及空气净化等方面有着重大的潜在应用价值。然而二氧化钛是宽禁带材料,仅能吸收太阳光谱的紫外光部分,太阳能利用效率低,通常需要用紫外光  相似文献   

12.
ZnO是一种重要的Ⅱ-Ⅵ族半导体材料,其能带宽度约为3.37eV,在光电子学、传感、光催化、发电等诸多领域都具有巨大的应用潜力。本文采用简单的离子交换和热蒸发法成功制备了Fe掺杂ZnO空心微球,并利用扫描电镜、透射电镜、X射线粉末衍射仪对其形貌、结构以及成分等进行了详细的表征。光吸收测试证明Fe元素掺杂能够扩展ZnO的光吸收波段,实现波长375~600nm的光波吸收。另外,光催化实验证明Fe掺杂ZnO空心微球能够有效地促进罗丹明B的降解,表明合成的Fe掺杂ZnO空心微球是一种优异的光催化剂。  相似文献   

13.
均一形貌的ZnO纳米棒的制备及其光催化性能研究   总被引:20,自引:0,他引:20  
ZnO nanorods were synthesized from high purity Zn granule by a vapor phase deposition in the Ar + O2 gas. The products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The ZnO nanorods were typically 1~2 μm in length and 20~30 nm in diameter with an aspect ratio as high as 20. The UV absorption properties were detected and the results show that the ZnO nanorods have an extremely strong absorption at 200~380 nm wavelength. The results were good when the ZnO nanorods were used as photocatalyst.  相似文献   

14.
以Bi(NO_3)_3·5H_2O和ZnCl_2为原料,采用700℃高温固相煅烧的方法制备了能响应于太阳光的Bi_(38)ZnO_(58)光催化纳米材料。XRD物相分析表明,该样品为立方晶系结构。SEM和TEM形貌观察发现,该催化剂基本为粒径约100 nm的球形颗粒,且分散性较好。用紫外可见漫反射(UV-Vis)对该光催化剂的光吸收特性进行测定,禁带宽度约为2.13 eV,在紫外光区和可见光区均有较强的光吸收特性。粗略计算Bi_(38)ZnO_(58)光催化剂的价带顶的电势电位约为2.6 eV,表明了该光催化剂具有很强的氧化能力。以12 mg/L的亚甲基兰溶液作为被降解物质,以太阳光为光源研究了Bi_(38)ZnO_(58)光催化剂的光催化活性。测试结果表明.其对亚甲基兰溶液具有较强的光催化降解性能,4 h可将亚甲基兰近乎完全催化降解。此光催化剂可循环使用,循环使用5次后,Bi_(38)ZnO_(58)样品的晶体结构基本未变,光催化效率仍保持在98%以上。  相似文献   

15.
以乙醇胺为辅助溶剂,采用水热合成法,制备了花状、梭状和剑状的ZnO微纳米结构。采用扫描电镜(SEM)、X射线衍射(XRD)、光致发光光谱(PL)和拉曼光谱等测试手段对样品的形貌、结构、晶相等进行了表征。结果表明所有样品均为六方纤锌矿结构ZnO;其形貌和结晶度可通过改变物质的量的配比nZn2+/nOH-来调控。探讨了反应物配比对产物形貌结构的影响,乙醇胺对不同形貌ZnO的制备起到至关重要作用。以亚甲基蓝为目标降解物,采用紫外-可见吸收光谱(UV-Vis)并结合低温氮吸附-脱附比表面测试(BET),研究了花状、梭状和剑状ZnO的光催化活性。结果表明,与商用ZnO相比,制备的ZnO具有更好的光催化活性;样品催化活性与其比表面积不成正比,具有最小比表面积的花状ZnO拥有最好的光催化活性,这可能是由于其低的结晶度和特殊的花状形貌所致。  相似文献   

16.
采用水热法原位合成了Ru掺杂BiOBr空心微球(Ru/BiOBr)复合光催化剂,并对其进行了XRD、 SEM、 TEM、 EDS、 DRS、 EIS等表征.结果表明,所合成的BiOBr材料是由许多小厚度的交错纳米片自组装而成的,同时Ru纳米颗粒成功负载到BiOBr表面,该复合材料对还原CO_2和降解有机模拟污染物(罗丹明B, RhB)具有良好的光催化性能.当Ru的掺杂量为0.4%时复合材料的光催化活性最佳, 4 h后甲醇产量可达1103μmol/g_(cat),并且60 min内对RhB的降解率达到98%.除此之外,还讨论了复合材料的光催化机理和稳定性.  相似文献   

17.
梁英  刘英 《应用化学》2009,26(10):1247-1249
以Zn(Ac)2•2H2O、Fe(NO3)3•9H2O和NaOH为原料,采用水热法合成了Fe掺杂ZnO复合材料。并用x射线衍射和扫描电子显微镜技术对合成样品的结构和形貌进行了表征,Fe掺杂ZnO合成产物为直棒状,直径为500 nm,长度为3 µm左右。样品的紫外可见漫反射分析,在300~500 nm紫外可见光区域均有强的吸收。利用Fe掺杂ZnO作为光催化剂降解有机染料,发现对于光催化降解有机染料有较好的降解功能,且光降解性能优于纯ZnO材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号