首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
新型固体酸SO42-/Al2O3-Al 的制备与表征   总被引:3,自引:1,他引:3  
采用铝阳极氧化法制备了A12O3-Al一体型载体.并通过浸渍硫酸的方法制备了新型固体酸SO4^2-/Al2O3-Al催化剂.采用BET、XRD、XPS和NH3-TPD对其结构和酸性进行了表征.结果表明,该催化剂具有合适的孔结构.Al2O3-Al载体为无定形结构.NH3-TPD结果表明.该催化剂同时具有弱酸及强酸位.用乙酸/乙醇酯化催化反应评估了该固体酸的催化性能.  相似文献   

2.
填料型固体酸的制备及其催化性能   总被引:7,自引:0,他引:7  
用阳极氧化法制备了填料式Al2O3-Al载体,经浸渍H2SO4后再焙烧制得SO42-/Al2O3-Al固体酸催化剂.用SEM,BET,XRD和NH3-TPD等手段对其进行了表征,结果显示,载体Al2O3膜为无定形结构,SO42-/Al2O3-Al为中等酸强度的固体酸.用乙酸-乙醇酯化催化反应评估了该固体酸的催化性能,显示出催化剂具有较高的催化活性,且稳定性较好.  相似文献   

3.
A large-area crystalline zinc aluminate nanotube array on its own nanonet was prepared by thermal replication on an anodized aluminum oxide template and through the gas-solid reaction between Zn vapor, Al2O3, and residual O2 or produced H2O. The free-standing nanotube array plus the nanonet structure, as a whole, was at least 900 mum2 in area. Each nanotube, 70-80 nm in diameter, was seamlessly connected to an underlying pore in the nanonet and was about 800 and 15 nm in length and wall thickness, respectively. The nanonet was about 20 nm thick. Both the ZnAl2O4 nanotube and nanonet were in face-centered cubic crystal form and grew along the [12] direction.  相似文献   

4.
铝阳极化皮膜之显微组织与电化学特性研究   总被引:1,自引:0,他引:1  
利用超薄切片技术(ultramicrotomy)制作铝阳极化成箔之横截面切片,于穿透式电子显微镜(TEM)下对氧化铝介电皮膜厚度,型态,成份与微结构进行观察与分析,并探讨其与皮膜电化学特性表现之关联性.于85℃己二酸铵水溶液中进行铝阳极化成处理.当电压低于100V时,所成长之介电层为非晶质氧化铝皮膜,其电阻值随化成电压升高而增加,但介电常数不受化成电压之影响.当化成电压超过100V时,结晶状的γ′_Al2O3开始出现,且其产生的量随电压值的提高而不断增加,结晶化的过程造成皮膜中缺陷与裂缝产生,以致皮膜电阻逐渐降低,但平均介电常数却有明显随皮膜中γ′_Al2O3增加而升高的趋势.化成电压达到200V时,介电皮膜之结构明显可分为两层,包括内层非晶质氧化铝与外层结晶性γ′_Al2O3;其电化学交流阻抗行为亦显示界面双电容组件特性,结晶性γ′_Al2O3层的电阻较低,但比非晶质氧化铝层具较高电容值.  相似文献   

5.
多孔质铝阳极氧化膜表面与界面研究   总被引:1,自引:0,他引:1  
铝质材料阳极氧化作为铝质材料最重要的表面改性技术已有几十年历程,并在现代工业中获得了广泛应用[1,’].前人对铝阳极氧化股的结构、组成及生成机理等进行了大量的研究工作[3-6],研究结果表明铝阳极氧化膜具有多孔型和壁垒型二种,其中多孔型铝阳极氧化膜是由非晶态  相似文献   

6.
The oxide content in Al powders has been found to have a significant effect on the expansion and stability of foams made via a PM route. With low oxide contents (O<0.3 wt%) expansion is moderate and the foam structure is unstable. Larger expansions, improved foam stability and more homogeneous foam structures are achieved if the amount of oxide in the powder is moderate (O=0.3-0.6 wt%). Foaming precursors with excessive oxide contents (O>0.6 wt%) results in small expansions but very stable foam structures. Oxides were observed to form clusters of crumpled films, which at higher levels form a network which restricts the drainage of liquid from the cell walls and Plateau borders, but which also inhibit foam expansion. Oxide clusters in the cell walls lead to a decrease in the minimum cell wall thickness, resulting in an increase in foam expansion.  相似文献   

7.
High-resolution transmission electron microscopy and electron energy loss spectroscopy (EELS) were performed on electrochemically anodized niobium and niobium oxide. Sintered anodes of Nb and NbO powders were anodized in 0.1 wt% H3PO4 at 10, 20, and 65 V to form surface Nb2O5 layers with an average anodization constant of 3.6 +/- 0.2 nm/V. The anode/dielectric interfaces were continuous and the dielectric layers were amorphous except for occurrences of plate-like, orthorhombic pentoxide crystallites in both anodes formed at 65 V. Using EELS stoichiometry quantification and relative chemical shifts of the Nb M4,5 ionization edge, a suboxide transition layer at the amorphous pentoxide interface on the order of 5 nm was detected in the Nb anodes, whereas no interfacial suboxide layers were detected in the NbO anodes.  相似文献   

8.
Scanning tunneling microscopy (STM) was employed to study the mechanism for the oxidation of Al(111) with thermal O2 and NO in the 20%-40% monolayer coverage regime. Experiments show that the islands formed upon exposure to thermal O2 and NO have dramatically different shapes, which are ultimately dictated by the dynamics of the gas surface interaction. The circumference-to-area ratio and other island morphology statistics are used to quantify the average difference in the two island types. Ultrahigh-vacuum STM was employed to make the following observations: (1) Oxygen islands on the Al(111) surface, formed upon exposure to thermal oxygen, are elongated and noncompact. (2) Mixed O/N islands on the Al(111) surface, formed upon exposure to thermal nitric oxide (NO), are round and compact. (3) STM movies acquired during thermal O2 exposure indicate that a complex mechanism involving chemisorption initiated rearrangement of preexisting oxygen islands leads to the asymmetric and elongated island shapes. The overall mechanism for the oxidation of the Al(111) surface can be summarized in three regimes. Low coverage is dominated by widely isolated small oxygen features (<3 O atoms) where normal dissociative chemisorption and oxygen abstraction mechanisms are present. At 20%-40% monolayer coverage, additional oxygen chemisorption induces rearrangement of preexisting islands to form free-energy minimum island shapes. At greater than approximately 40% monolayer coverage, the apparent surface oxygen coverage asymptotes corresponding to the conversion of the 2D islands to 3D Al2O3 surface crystallites. The rearrangement of oxygen islands on the surface to form the observed islands indicates that there is a short-range oxygen-oxygen attractive potential and a long-range oxygen-oxygen repulsive potential.  相似文献   

9.
Zr–Al alloys containing up to 26 at.% aluminum, prepared by magnetron sputtering, have been anodized in 0.1 mol dm−3 ammonium pentaborate electrolyte, and the structure and dielectric properties of the resultant anodic oxide films have been examined by grazing incidence X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, and AC impedance spectroscopy. The anodic oxide film formed on zirconium consists of monoclinic and tetragonal ZrO2 with the former being a major phase. Two-layered anodic oxide films, comprising an outer thin amorphous layer and an inner main layer of crystalline tetragonal ZrO2 phase, are formed on the Zr–Al alloys containing 5 to 16 at.% aluminum. Further increase in the aluminum content to 26 at.% results in the formation of amorphous oxide layer throughout the thickness. The anodic oxide films become thin with increasing aluminum content, while the relative permittivity of anodic oxide shows a maximum at the aluminum content of 11 at.%. Due to major contribution of permittivity enhancement, the maximum capacitance of the anodic oxide films is obtained on the Zr–11 at.% Al alloy, being 1.7 times than on zirconium at the formation voltage of 100 V.  相似文献   

10.
Using high-resolution soft X-ray photoemission, Al 2p, we have been able to quantify the relative populations of tetrahedrally (Al(tet)) and octahedrally (Al(oct)) coordinated Al(3+) in three distinct phases of nanoscale aluminum oxide films on NiAl(110). We have hence determined the bulk alumina phases that the nanoscale films most resemble. Adsorption of oxygen at room temperature produces a layer which predominately (90%) contains Al(tet) and is analogous to the amorphous bulk phase of alumina. Annealing this layer results in an Al enrichment of the oxide layer, through the diffusion of metal from the substrate, and an increase in the relative amount of Al(oct), producing a gamma-alumina-like layer with a relative Al(oct)/Al(tet) occupancy of 28 +/- 3%/72 +/- 3%. Oxygen adsorption at 823 K also produces a gamma-like phase, with a relative Al(oct)/Al(tet) occupancy of 27 +/- 3%/73 +/- 3%, although this layer is thicker than that formed at room temperature. Both oxidation methods produce gamma-alumina layers that display poor translational order. However, these poorly ordered layers have a relative Al(oct)/Al(tet) occupation similar to that of well-ordered oxide films produced using different oxidation conditions in previous studies. Both gamma layers undergo partial decomposition upon annealing to 1273 K, producing an alpha-alumina-like oxide, which contains only Al(oct), and is highly deficient in Al. There are significant oxide-free areas within the alpha-alumina oxide layer, which is characteristic of crystallite formation. Repeated cycles of oxidation and annealing to 1273 K do not produce a homogeneous film, but they do make the alpha-like oxide more Al rich.  相似文献   

11.
李春林  刘涛等 《分子催化》2001,15(5):351-354
采用水热合成法,制备了不同Al2O3含量的Ni/Zr0.4Ce0.6O2-Al2O3催化剂,采用X-射线衍射(XRD)和扩展X光吸收精细结构(EXAFS),对催化剂样品进行结构表征;考察了Al2O3的加入对催化剂结构和CH4-CO2重整反应活性的影响。结构表征和活性测试表明,催化剂中存在的主要晶相是Zr0.4Ce0.6O2.Al2O3的加入,使催化剂颗粒度变小,镍的分散度提高,并使反应活性有明显改进;而过量Al2O3的加入,却容易导致积炭。  相似文献   

12.
Peisach M  Poole DO  Röhm HF 《Talanta》1967,14(2):187-194
The scattering of accelerated alpha particles has been used to determine the surface oxide film thickness of anodized aluminium. The measurements were based on determining the difference between the energy of an alpha particle scattered from the surface oxide layer and that from the underlying metal. Films ranging in thickness from 10 to 130 microg/cm (2) were analysed non-destructively with a relative standard deviation of 3.5 %. The average time for an analysis was 30 min with an incident beam current of up to about 1 microA.  相似文献   

13.
含铜类水滑石催化材料热分解过程的研究   总被引:2,自引:0,他引:2  
共沉淀法合成了Cu0.13Mg0 6Al0.27(OH)2(CO3)0.135·xH2O类水滑石物质 (CuHTlc) ,采用XRD、DTA TG、BET、TEM和27AlMASNMR技术对其热分解过程进行了表征。结果表明 ,在较低焙烧温度时 (低于300℃ ),氢氧根和层间水部分脱除 ,但水滑石仍保持其层状结构 ;500℃时 ,其层状结构被完全破坏 ,出现氧化镁晶相结构 ,随着焙烧温度的进一步升高 ,尖晶石晶相生成。500℃时的焙烧产物具有最大比表面 (193m2·g-1)。当温度高于500℃ ,焙烧产物组成可表示为Cu0.13Mg0.6Al0.27O0.135,CuHTlc的热分解过程可表示为 :Cu0.13Mg0.6Al0.27(OH)2(CO3)0.135·xH2O→Cu0.13Mg0.6Al0.27O0.135 (1 x)H2O 0.135CO2。  相似文献   

14.
X-ray photoelectron spectroscopy(XPS)was used to study two different oxidation treatments on the GaAs(100)surface———the thermal oxidation in the air,and the ultraviolet-light oxidation in the UV-ozone. A series of properties including the oxide composition,chemical states,the surface Ga/As atomic ratio and the thickness of the oxide layer grown on GaAs surface were compared. The results indicate that the oxide composition,the surface Ga / As atomic ratio and the thickness of the oxide layer oxide on GaAs surface are different for different oxidation methods. The oxides on GaAs surface grown by thermal oxidation in the air are composed of Ga2O3,As2O5,As2O3 and elemental As;and the Ga/As atomic ratio is drifted off the stoichiometry far away. The Ga/As atomic ratio of oxide layer on GaAs surface is increases with the thickness of oxide. However,the oxides on GaAs surface grown by UV-ozone are made up of only Ga2O3 and As2O3,As2O5 and elemental As are not detected,the Ga/As atomic ratio is close to unity. The thickness of oxide layer on GaAs can be controlled by the UV exposing time. The mechanism of oxidation of GaAs is also discussed. The UV-light radiation not only causes the oxygen molecular excited forming atomic oxygen,but also induces the valence electrons of the GaAs excited from the valence band,and then the reactivity of Ga and As atom increase,and they can easily react with the excited atomic oxygen at the same reactive velocity.  相似文献   

15.
采用静电纺丝技术,通过改进实验装置,采用同轴三喷嘴实验装置代替传统的单喷嘴实验装置,在最佳的纺丝条件下制备了[Ni(CH3COO)2+PVP]@[Al(NO3)3+PVP]@[Ti(OC4H9)4+CH3COOH+PVP]前驱体复合电缆,将其进行热处理,制备出了NiO@Al2O3@TiO2同轴三层纳米电缆. 采用差热-热重(TG-DTA)、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析技术对样品进行了表征. 结果表明,所得产物为NiO@Al2O3@TiO2同轴三层纳米电缆. 纳米电缆芯层为NiO,直径大约为137.83±8.85 nm;中间层为Al2O3,厚度大约为215.11±8.66 nm;壳层为TiO2,厚度大约为156.26±16.50 nm. 对NiO@Al2O3@TiO2同轴三层纳米电缆的形成机理进行了讨论.  相似文献   

16.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Thin, crystallographically oriented single-crystalline Al2O3 films can be grown epitaxially on Cr2O3(0001) by codeposition of Al vapor and O2 at a substrate temperature of 825 K. The properties and growth of these films were monitored by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), low-energy ion scattering (LEIS), and X-ray photoelectron spectroscopy (XPS). Two routes of preparation were investigated: (i) stepwise growth by alternating deposition of Al at room temperature and subsequent exposure to O2 at elevated temperatures; (ii) codeposition of Al and O2 at T > 800 K. The first route was consistently found to result in the growth of a complex interfacial oxide followed by the growth of polycrystalline Al2O3. The second mode of preparation provided homogeneous and ordered, probably (0001)-oriented, films of Al2O3 that maintained a LEED pattern up to a thickness around 10 A. The surface sensitive Cr MVV Auger transition at 34 eV was completely attenuated once the Al2O3 layer had reached a thickness of 6 A, pointing to film homogeneity at an early stage. This was confirmed by the absence of a significant Cr signal in LEIS spectra.  相似文献   

18.
Threshold Al KLL Auger electron spectroscopy and K‐edge x‐ray absorption fine structure spectroscopy have been used to examine technical purity (99.5%) aluminium foil before and after chemical treatment that altered the thickness and degree of hydroxylation of the oxidized layer. Comprehensive surface chemical characterization was effected by means of monochromatized Al Kα‐excited photoelectron spectroscopy. Threshold Al KL2, 3L2, 3 spectra were obtained for three of the foils investigated and these spectra were in broad agreement with those observed previously for pure Al foil. The relative intensities of the spectral components for two of the foils were clearly consistent with the previously proposed assignment of the resonantly enhanced Auger component, situated between those arising from the metal and Al(III) oxide, to a thin interfacial layer. The threshold Auger spectra from the aluminium foil bearing the thickest and most hydroxylated oxidized layer were not obviously consistent with the interfacial layer model but O K‐edge spectra revealed that this surface layer was fundamentally different from the others and could have had a greater interfacial surface area. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Fe3Al and Cr18-Ni8 stainless steel were diffusion-bonded in vacuum and a Fe3Al/Cr18-Ni8 interface with reaction layer was formed. Microstructure in the reaction layer at Fe3Al/Cr18-Ni8 interface was analyzed by means of scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). The growth of reaction layer with heating temperature (T) and holding time (t) was researched. The results indicate that FeAl, Fe3Al, Ni3Al, and alpha-Fe (Al) solid solution are formed in the reaction layer. These phases are favorable to promote the element diffusion and to accelerate the formation of the reaction layer at Fe3Al/Cr18-Ni8 interface. The growth of reaction layer obeys the parabolic law and its thickness (X) is expressed by X2 = 7.5 x 10(-4)exp(-83.59/RT)(t - t0).  相似文献   

20.
Thermal evaporation processing of nano and submicron tin oxide rods   总被引:1,自引:0,他引:1  
Nano and submicron rods of semiconductor tin oxide (SnO2) have been synthesized via thermal evaporation technique. Various substrates such as oxidized silicon (Si/SiO2), porous alumina (Al2O3), oxidized and anodized titanium (Ti/TiO2), with the sputtered platinum (Pt) catalyst, have been utilized for this purpose. The effect of Pt sputtering time and the nature of the substrate on the size distribution and the morphology of the SnO2 rods and their substrate-surface-coverage have been investigated. The formation of nano and submicron SnO2 rods has been attributed to the vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanisms depending on the processing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号