首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The average multiplicity of gamma rays emitted by fragments originating from the fission of 226Th nuclei formed via a complete fusion of 18O and 208Pb nuclei at laboratory energies of 18O projectile ions in the range E lab = 78–198.5 MeV is measured and analyzed. The total spins of fission fragments are found and used in an empirical analysis of the energy dependence of the anisotropy of these fragments under the assumption that their angular distributions are formed in the vicinity of the scission point. The average temperature of compound nuclei at the scission point and their average angular momenta in the entrance channel are found for this analysis. Also, the moments of inertia are calculated for this purpose for the chain of fissile thorium nuclei at the scission point. All of these parameters are determined at the scission point by means of three-dimensional dynamical calculations based on Langevin equations. A strong alignment of fragment spins is assumed in analyzing the anisotropy in question. In that case, the energy dependence of the anisotropy of fission fragments is faithfully reproduced at energies in excess of the Coulomb barrier (E c.m. ? E B ≥ 30 MeV). It is assumed that, as the excitation energy and the angular momentum of a fissile nucleus are increased, the region where the angular distributions of fragments are formed is gradually shifted from the region of nuclear deformations in the vicinity of the saddle point to the region of nuclear deformations in the vicinity of the scission point, the total angular momentum of the nucleus undergoing fission being split into the orbital component, which is responsible for the anisotropy of fragments, and the spin component. This conclusion can be qualitatively explained on the basis of linear-response theory.  相似文献   

2.
It is shown that the emergence of anisotropies in the angular distributions of fragments originating from the spontaneous and induced fission of oriented actinide nuclei is possible only if nonuniformities in the population of the projectionsM (K) of the fissile-nucleus spin onto the z axis of the laboratory frame (fissile-nucleus symmetry axis) appear simultaneously in the vicinity of the scission point but not in the vicinity of the outer saddle point of the deformation potential. The possibilities for creating the orientation of fissile nuclei for spontaneous and induced fission and the effect of these orientations on the anisotropies under analysis are considered. The role of Coriolis interaction as a unique source of the mixing of different-K fissile-nucleus states at all stages of the fission process is studied with allowance for the dynamical enhancement of this interaction for excited thermalized states of the nucleus involved that is characterized by a high energy density. It is shown that the absence of thermalization of excited states of the fissile nucleus that appear because of the effect of nonadiabaticity of its collective deformation motion in the vicinity of the scission point is a condition of conservation of the influence that transition fission states formed at the inner and outer fission barriers exerts on the distribution of the spin projections K for lowenergy spontaneous nuclear fission. It is confirmed that anisotropies observed in the angular distributions of fragments originating from the fission of nuclei that is induced by fast light particles (multiply charged ions) are due to the appearance of strongly excited equilibrium(nonequilibrium) states of the fissile nucleus in the vicinity of its scission point that have a Gibbs (non-Gibbs) distribution of projections K.  相似文献   

3.
4.
The mass asymmetry of fragments from nuclear fission of heavy nuclei is reviewed. While mass asymmetry is a common and well-known phenomenon for low-energy fission of the lighter actinides, more recent experiments have demonstrated that, for the heaviest actinides, the mass distribution switches to a symmetric one. On the other hand, it has been discovered that, though for fissioning nuclei with mass numbersA225 the mass distribution is basically symmetric, an asymmetric component is clearly to be identified for nuclei down to the Pb-region. In the absence of a generally accepted dynamical theory of fission, the above experimental findings are discussed in terms of static energy considerations. Triggered from the outset by the structure of the potential energy surface at the saddlepoint, the energy balance at the scission point between the available energy (Q-value) of the reaction and the Coulomb and deformation energy of the nascent fragments is shown to steer the characteristics of the fragment mass distributions.  相似文献   

5.
We evaluate the temperature Tscis at the scission point and the saddle-to-scission time τscis for the fission of heated nuclei. We use classical Lagrange-like equations of motion within the liquid-drop model. The nuclear surface is parameterized by a two-parameter family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. We use the friction tensor that is derived from the Navier-Stokes momentum-flux tensor and which takes into account the boundary conditions at the nuclear surface. The scission line is determined from the instability condition of the nuclear shape with respect to variations of the neck radius. A numerical solution to the dynamical equations is obtained for the 236U nucleus. The viscosity coefficient μ is deduced from a comparison of experimental data on the kinetic energy of fission fragments with the computed one. It is found that μ obtained by using our approach deviates significantly from μ of the standard hydrodynamic model.  相似文献   

6.
Isomeric yield ratios of 30 fission products in 24 MeV proton-induced fission of238U were measured by the use of the ion-guide isotope separator on-line. The obtained isomeric yield ratios were converted to the angular momenta of primary fission fragments based on the statistical model. The deduced angular momenta were examined from various aspects. It is found that in general the angular momentum continuously increases with the fragment mass number including the region of symmetric mass division. However, there are some exceptions. For Sn isotopes the deduced angular momenta are quite small due to the spherical shape of the nuclear shell configuration. It is also concluded from the consideration of the charge distribution that the angular momentum of fission product scatters considerably within the narrow range of mass division. The dependence of the angular momentum on the available energy of fragments at scission point indicates that the individual fragment possesses a characteristic deformation at scission and/or the deduced angular momentum is seriously affected by the particle excitation after scission.  相似文献   

7.
We calculate the macroscopic potential energy of deformation for symmetric configurations of interest in fission and heavy-ion reactions. The shape of the system is characterized in terms of two moments of the matter distribution. These moments correspond to the distance between the centers of mass of the two halves of the system and to the elongation of each half about its center of mass. The configurations studied include a continuous sequence of shapes from the sphere to two-, three-, and four-fragment scission lines. Beyond the scission lines and prior to the line of first contact in heavy-ion reactions we represent the system in terms of separated oblate and prolate spheroids. The macroscopic energy is calculated as the sum of a Coulomb energy and a nuclear macroscopic energy that takes into account the finite range of the nuclear force. For systems throughout the periodic table we display the calculated energy as a function of the two moments in the form of contour maps. Some important features of the contour maps are the binary, ternary, and quaternary saddle points, the fission and fusion (or two-fragment) valleys, and the three- and four-fragment valleys. The maps illustrate how the topography of the potential energy changes as a function of the nuclear system considered. For example, as we move from lighter to heavier nuclear systems the binary saddle point moves from outside the point of first contact in heavy-ion reactions to inside the contact point. Because of this, the formation of a heavy compound nucleus requires additional energy relative to the maximum in a one-dimensional interaction barrier. The maps also illustrate for moderately heavy systems the presence of separate valleys for binary fission and fusion. For still heavier systems the ternary and quaternary saddle points are no longer present. This means that the ternary and quaternary valleys are accessible by paths that decrease monotonically in energy beyond the binary saddle point. Finally, for nuclear systems heavier than about 300120, the binary saddle point itself disappears, which in the absence of single-particle effects precludes altogether the formation of a compound system.  相似文献   

8.
The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding232Th and238U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy.  相似文献   

9.
Induced fission reactions of fissioning compound nuclei that result from the capture of various incident particles (nucleons, γ rays, multiply charged ions) by target nuclei are investigated using the generalized nucleus model and the Wigner random matrix method. The effect produced on the fission widths of the compound nucleus by the competition between the excitation energies of its collective vibrational degrees of freedom that lead to its scission into fission fragments and its rotational and multi-quasiparticle states is analyzed. Bohr’s concept of transition fission states developed for near-barrier nuclear fission is generalized to the induced fission of nuclei with the excitation energies noticeably higher than the fission barriers. The temperature of the fissioning nucleus in the vicinity of the point of its scission into fission fragments is estimated.  相似文献   

10.
Results of temperature-dependent Hartree-Fock calculations for equilibrated hot nuclei are presented, extending to the highest temperatures at which the nuclei remain stable. A subtraction procedure developed earlier for isolating the properties of the nucleus from the nucleus + vapor system is applied. The temperature dependence of various quantities characterizing hot nuclei is investigated. The influence of different effective interactions in the Hartree-Fock equations is examined. Special attention is devoted to the study of the high-temperature stability limit of hot nuclei. This limit in nuclei with the Coulomb interaction artificially switched off (i.e. uncharged nuclei) is shown to correspond to the critical temperature of the liquid-gas phase transition expected on the basis of hot nuclear matter calculations. In realistic charged nuclei the Coulomb repulsion causes a nucleus to become electrostatically unstable and to fall apart at much lower temperatures than its uncharged partner. The approach to and the temperature of this Coulomb instability are very sensitive to the choice of the nuclear interaction. Studying this instability in compound nuclei with different charge-to-mass ratio provides a sensitive measure of the temperature dependence of the nuclear surface properties as well as of certain features of the nuclear equation of state.  相似文献   

11.
提出用多个准卡西尼亚回转体围绕一个内接球来作为对称2重及多重碎裂的形状.该形状可以从一球形光滑地形交到断点(仅用一个形变参数).此形状是卡西尼亚卵形体的推广,在二裂变情况下已证明它是一个良好的近似.利用这种参数化的类卡西尼亚形状,计算出了2、3、4、6和8重碎裂的形变位势和位垒,计算中考虑了亲近势和裂变位垒对温度的依赖性.此外还讨论了裂变动力学延时效应对于平衡统计多重碎裂的影响.  相似文献   

12.
The effect of nuclear and Coulomb interactions on the shapes of two colliding208Pb nuclei at finite temperature is investigated. The complex potential energy density derived by Faessler and collaborators and the kinetic energy density and entropy density for two Fermi spheres at finite temperature are used to calculate the free energy of the208Pb +208Pb system in the energy density formalism. Shell corrections are added to the free energy in the framework of the Strutinsky method. The total free energy is minimized with respect to the quadrupole deformation and the diffuseness to determine the density distribution of208Pb nucleus at certain distanceR and temperatureT assuming the deformed Woods-Saxon shape for each nucleus. It is found that the nucleus acquires larger deformation and diffuseness as the temperature increases. The interaction potential between two208Pb nuclei is calculated from the minimized free energy. The total (nuclear + Coulomb) potential is found to decrease with increasing temperature, whereas the real part of the nuclear potential becomes more repulsive as the temperature increases.  相似文献   

13.
V S Ramamurthy  S S Kapoor 《Pramana》1978,10(3):319-327
A method is proposed to deduce the shell correction energy corresponding to the fission transition state shape of nuclei in the mass region around 200, from an analysis of the first chance fission values of the ratio of fission to neutron widths, (Γ f n )1. The method is applied to the typical case of the fissioning nucleus212Po, formed by alpha bombardment of208Pb. For the calculation of the neutron width, the level densities of the daughter nucleus after neutron emission were obtained from a numerical calculation starting from shell model single particle energy level scheme. It is shown that with the use of standard Fermi gas expression for the level densities of the fission transition state nucleus in the calculation of the fission width, an apparent energy dependence of the fission barrier height is required to fit the experimental data. This energy dependence, which arises from the excitation energy dependence of shell effects on level densities, can be used to deduce the shell correction energy at the fission transition state point. It is found that in the case of212Po, the energy of the actual transition state point is higher than the energy of the liquid drop model (LDM) saddle point by (3 ± 1) MeV, implying significant positive shell correction energy at the fission transition state. Further, the liquid drop model value of level density parametera is found to be a few per cent smaller for the saddle point shape as compared to its spherical shape.  相似文献   

14.
Potential energy surfaces of uranium nuclei in the range of mass numbers 229 through 244 are investigated in the framework of the macroscopic-microscopic model and the heights of static fission barriers are obtained in terms of a double-humped structure. The macroscopic part of the nuclear energy is calculated according to Lublin-Strasbourg-drop (LSD) model. Shell and pairing corrections as the microscopic part are calculated with a folded-Yukawa single-particle potential. The calculation is carried out in a five-dimensional parameter space of the generalized Lawrence shapes. In order to extract saddle points on the potential energy surface, a new algorithm which can effectively find an optimal fission path leading from the ground state to the scission point is developed. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.  相似文献   

15.
The neutronless fission of 252Cf is studied in the frame of a molecular model in which the scission configuration is described by two aligned fragments interacting by means of Coulomb (+ nuclear) forces. The study is carried out for different distances between the fragments tips and excitation energies. For a given deformation, the fragment's total energy is computed via the constrained Hartree-Fock + BCS formalism. The total excitation energy present in the fragments is supposed to contribute only to the fragments deformation and the asymptotic value of the kinetic energy is equated to the inter-fragment potential at scission. These two constraints are yielding a few fission channels for a fixed tip distance and excitation energy. Discarding those fission channels corresponding to a disequilibrium in the sharing of the excitation energy between the two fragments, we establish the most likely scission configurations for a specified excitation energy. Received: 24 September 1999  相似文献   

16.
In this paper, the liquid-drop model with three parameters {c, h,a} is used to describe symmetric or asymmetric fission process. The analytical expression of the effective moment of inertia is given. The inertial and frictional tensors of nucleus are evaluated by the Werner-Wheeler method. Based on a standard liquid-drop model, the Coulomb energy and surface energy are accurately calculated. The scission point of the fissioning nucleus is defined by energy criteria. The salient features of the dynamical coefficients are discussed.  相似文献   

17.
《Nuclear Physics A》1988,489(3):461-476
The symmetric fission path leading to smooth extended shapes and the fusion or new fission path going through the two tangent sphere configuration are investigated within the liquid-drop model including the nuclear proximity energy. Analytical formulae are given for the various shape-dependent functions which govern the dynamics. The quadrupole moment, the perpendicular moment of inertia and the Coulomb energy are similar in the two paths. In contrast, the neck radius, the rupture point between the fragments, the parallel and effective moments of inertia, the surface energy and the critical angular momentum against fission are quite different in the two valleys. The introduction of the proximity energy strongly lowers the deformation energy in the fusion valley and for the light, medium and very heavy nuclei the barrier heights are nearly equal in the two paths. This flattening of the potential surface by the proximity forces allows to better understand the sudden transition between the one- and two-body configurations.  相似文献   

18.
Internal excitations of the fissioning nucleus are usually described phenomenologically by friction terms. In the present paper an approach is discussed which is in principle based on a correct quantum mechanical treatment taking the projection form of the Schrödinger equation as a starting point. Considering nuclear fission as an almost adiabatic process an estimate for the friction energy is made. In this very crude estimate only 10–15% of the collective energy gain in going from the saddle to the scission point is transformed into internal excitation energy. This is in agreement with experimental data showing pronounced substructure effects which would be destroyed in the presence of a larger friction. As compared to other microscopic calculations, in the present work the total Hamiltonian is split in such a way that the only perturbation term being responsible for the deformation is essentially the Coulomb energy. By this assumption the calculation of transition probabilities to intrinsically excited states becomes rather insensitive to the exact excitation energy spectrum of the compound nucleus.  相似文献   

19.
采用扩散模型研究核裂变,需要求解Fokker-Planck方程。本文提出一个数值计算方法-平均隐式差分方法。对具有粘滞性的核体系的有关裂变动力学量,如几率分布、裂变率、断点处的平均动能以及鞍点到断点的平均扩散时间等一系列物理量做了计算,并与适合大粘滞性的Kramers的解析解做了比较。通过与解析解的比较及对归一常数的检验,证明计算结果精确可靠。  相似文献   

20.
It is shown that the multiplicities and angular and energy distributions of neutrons and photons evaporated from thermalized fragments originating from the spontaneous and low-energy induced fission of nuclei, the relative yields of ground and isomeric states of final fragments, and the features of delayed neutrons emitted upon the beta decay of the above fragments can successfully be described by employing nonequilibrium distributions of spins and relative orbital angular momenta of fission fragments formed in the vicinity of the scission point for the fissile nucleus being studied. It is also shown that these distributions, which are characterized by large mean values of the spins and orbital angular momenta directed orthogonally to the symmetry axis of the fissioning nucleus are successfully constructed upon simultaneously taking into account zero-mode transverse wriggling and bending vibrations of a fissile compound nucleus in the vicinity of its scission point, the wriggling vibrations being dominant. It is confirmed that the zero-mode wriggling vibrations considered immediately above are directly involved in the formation of the angular distributions of fragments originating from the spontaneous and low-energy fission of nuclei. This makes it possible to describe successfully such distributions for photofission fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号