首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Thermal degradation of piping induced by high cycle thermal fatigue (HCTF) is of significant importance as operating Nuclear Power Plants (NPP) become older and lifetime extension activities are initiated. In particular, HCTF incidents related to turbulent thermal mixing of fluids in a T-junction piping system are not well understood and could not be adequately monitored using common thermocouple instrumentation. To investigate this phenomenon, an experimental T-junction test facility was commissioned at the University of Stuttgart, known as the Fluid Structure Interaction (FSI) test facility. The paper presents the experimental investigation and the corresponding numerical validation using the large eddy simulation (LES) method to study T-junction flow mixing. Three experimental test cases are investigated with temperature differences (∆T) of 51.5 K (Case 1), 76 K (Case 2) and 97 K (Case 3) between the mixing fluids. A constant mass flow rate ratio (main/branch) of 4:1 is maintained in all the investigated cases. Flow mixing is observed to be incomplete in all the cases, resulting in a thermally stratified flow with an oscillating stratification layer downstream of the T-junction. Mean temperature and root mean square (RMS) temperature fluctuations predicted by LES in the mixing region are found to be in good agreement with measurement data, with the exception of few positions. Amplitudes of temperature fluctuations are observed to be higher near the stratification layer, ranging from 6.3–9.9% of ∆T. Power spectral density (PSD) analyses of temperature fluctuations indicate no dominant frequency (spectral peak) under prevailing flow conditions, an important factor in thermal fatigue analysis, and the energy of these fluctuations are mainly contained in the frequency range of 0.1–2 Hz for all the investigated cases. LES is performed using the CFD software ANSYS CFX 14.0.  相似文献   

2.
This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation.  相似文献   

3.
将两方程k-ω SST湍流模型和Sagaut的混合尺度亚格子模型通过一个混合函数相结合, 构造出一种混合大涡/雷诺平均N-S方程模拟方法(hybird large eddy simulation/reynolds-averaged navier-stokes, Hybrid LES/RANS), 采用这种混合模拟方法结合5阶WENO格式对Ma=2.8平板湍流边界层进行了数值模拟, 并在计算区域上游入口处采用“回收/调节”方法生成湍流脉动边界条件, 通过考查RANS区域向LES区域的过渡参数及网格分辨率对这种混合模拟方法进行了评价. 计算结果表明: 该文采用的混合模拟方法可以捕捉到湍流边界层中的大尺度结构且入口边界层平均参数不会发生漂移, 混合函数应当将RANS区域和LES区域的过渡点设置在对数律层和尾迹律层的交界处, 而过渡应当迅速以获得正确的雷诺剪切应力分布, 在该文采用的模型及数值方法的条件下, 流向及展向的网格小至与Escudier混合长相当时, 能够获得可以接受的脉动速度的单点-二阶统计值.  相似文献   

4.
Three dimensional large eddy simulation (LES) is performed in the investigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties, and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature departs from the Gaussian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Turbulent mixing starts from small scale motions, and then extends to large scale motions.  相似文献   

5.
In this study, the effect of heat transfer on the compressible turbulent shear layer and shockwave interaction in a scramjet has been investigated. To this end, highly resolved Large Eddy Simulations (LES) are performed to explore the effect of wall thermal conditions on the behavior of a reattaching free shear layer interacting with an oblique shock in compressible turbulent flows. Various wall-to-recovery temperature ratios are considered, and results are compared to the adiabatic wall. It is found that the wall temperature affects the reattachment location and the shock behavior in the interaction region. Furthermore, fluctuating heat flux exhibits a strong intermittent behavior with severe heat transfer compared to the mean, characterized by scattered spots. The distribution of the Stanton number shows a strong heat transfer and complex pattern within the interaction, with the maximum thermal (heat transfer rates) and dynamic loads (root-mean-square wall pressure) found for the case of the cold wall. The analysis of LES data reveals that the thermal boundary condition can significantly impact the wall pressure fluctuations level. The primary mechanism for changes in the flow unsteadiness due to the wall thermal condition is linked to the reattaching shear layer, which agrees with the compressible turbulent boundary layer theory.  相似文献   

6.
The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation(LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier–Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale(SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the-5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.  相似文献   

7.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

8.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

9.
Temperature fluctuations occur due to thermal mixing of hot and cold streams in the T-junctions of the piping system in nuclear power plants, which may cause thermal fatigue of piping system. In this paper, three-dimensional, unsteady numerical simulations of coolant temperature fluctuations at a mixing T-junction of equal diameter pipes were performed using the large eddy simulation (LES) turbulent model. The experiments used in this paper to benchmark the simulations were performed by Hitachi Ltd. The calculated normalized mean temperatures and fluctuating temperatures are in good agreement with the measurements. The influence of the time-step ranging from 100 Hz to 1000 Hz on the numerical simulation results was explored. The simulation results indicate that all the results with different frequencies agree well with the experimental data. Finally, the attenuation of fluctuation of fluid temperature was also investigated. It is found that, drastic fluctuation occurs within the range of less than L/D = 4.0; the fluctuation of fluid temperature does not always attenuate from the pipe center to the wall due to the continuous generation of vortexes. At the top wall, the position of L/D = 1.5 has a minimum normalized mean temperature and a peak value of root-mean square temperature, whereas at the bottom wall, the position having the same characteristics is L/D = 2.0.  相似文献   

10.
We present well-resolved large-eddy simulations (LES) of a channel flow solving the fully compressible Navier–Stokes equations in conservative form. An adaptive look-up table method is used for thermodynamic and transport properties. A physically consistent subgrid-scale turbulence model is incorporated, that is based on the Adaptive Local Deconvolution Method (ALDM) for implicit LES. The wall temperatures are set to enclose the pseudo-boiling temperature at a supercritical pressure, leading to strong property variations within the channel geometry. The hot wall at the top and the cold wall at the bottom produce asymmetric mean velocity and temperature profiles which result in different momentum and thermal boundary layer thicknesses. Different turbulent Prandtl number formulations and their components are discussed in context of strong property variations.  相似文献   

11.
采用大涡模拟方法,模拟了槽道湍流,得到了不同雷诺数下槽道湍流的结果. 在此基础上,研究了平均速度、雷诺应力、脉动动能和脉动速度均方根的分布;讨论了平均速度的壁面律问题;给出了雷诺应力、脉动动能和脉动速度均方根随雷诺数的变化规律,其中雷诺应力、脉动动能给出了定量公式.   相似文献   

12.
The filtered density function (FDF) is implemented for a two-dimensional, large eddy simulation (LES) of a gas phase, spatially developing, reacting and non-reacting, constant-density, plane mixing layer in a flow regime prior to the mixing transition where the flow is mainly two-dimensional. The unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities following the FDF approach. In the derived FDF transport equation, the effect of chemical reactions appears in a closed form. The Lagrangian Monte Carlo scheme is used to solve the FDF transport equation. The applicability and performance of the FDF for LES of a reacting plane mixing layer are assessed by comparisons with experimental measurements. In non-reacting flow, the calculated mean streamwise velocity profiles and mean mixture fraction profiles relax to self-similarity, which is in satisfactory agreement with the measurements. In reacting flow, the FDF calculation provided a satisfactory accuracy in comparison with measurements of mean reactant and product concentration. The increase in the total amount of product formation in the flip case demonstrates the asymmetric characteristics of the entrainment and mixing characteristics in the mixing layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Mixing processes of hot and cold fluids in a tee with and without sintered copper spheres are simulated by FLUENT using the large-eddy simulation (LES) turbulent flow model and the sub-grid scale (SGS) Smagorinsky-Lilly (SL) model with buoyancy. Comparisons of numerical results of the two cases with and without sintered copper spheres show that the porous medium significantly reduces velocity and temperature fluctuations because the porous medium can effectively restrict the fluid flow and enhance heat transfer. The porous medium obviously increases the pressure drop in the main duct. The porous medium reduces the power spectrum density (PSD) of temperature fluctuations in the frequency range from 1 Hz to 10 Hz.  相似文献   

14.
The highly turbulent flow occurring inside gas-turbine combustors requires accurate simulation of scalar mixing if CFD methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into an LES code, including assessment/testing of alternative discretisation schemes to avoid over/undershoots and excessive smoothing. Both second order accurate TVD and higher order accurate DRP schemes are assessed. The best performance is displayed by a DRP method, but this is only true on fine meshes; it produces similar (or larger) errors to a TVD scheme on coarser meshes, and the TVD approach has been retained for LES applications. The unsteady scalar mixing performance of the LES code is validated against published DNS data for a slightly heated channel flow. Excellent agreement between the current LES predictions and DNS data is obtained, for both velocity and scalar statistics. Finally, the developed methodology is applied to scalar transport in a confined co-axial jet mixing flow, for which experimental data are available. Agreement with statistically averaged fields for both velocity and scalar, is demonstrated to be very good, and a considerable improvement over the standard eddy viscosity RANS approach. Illustrations are presented of predicted time-resolved information e.g. time histories, and scalar pdf predictions. The LES results are shown, even using a simple Smagorinsky SGS model, to predict (correctly) lower values of the turbulent Prandtl number in the free shear regions of the flow, compared to higher values in the wall-affected regions. The ability to predict turbulent Prandtl number variations (rather than input these as in combustor RANS CFD models) is an important and promising feature of the LES approach for combustor flow simulation since it is known to be important in determining combustor exit temperature traverse.  相似文献   

15.
A new subgrid-scale (SGS) model for the thermal field is proposed. The model is an extended version of the mixed-timescale (MTS) SGS model for velocity field by Inagaki et al. (2005), which has been confirmed to be a refined SGS model for velocity field suited to engineering-relevant practical large eddy simulation (LES). In the proposed model for the thermal field, a hybrid timescale between the timescales of the velocity and thermal fields is introduced in a manner similar to velocity-field modeling. Thus, the present model dispenses with an ambiguous SGS turbulent Prandtl number, like the dynamic SGS model. In addition, the wall-limiting behavior of turbulence is satisfied, which is not in the original MTS model, by incorporating the wall-damping function for LES based on the Kolmogorov velocity scale proposed by Inagaki et al. (2010). The model performance is tested in plane channel flows at various Prandtl numbers, and the results show that this model gives the ratio of the timescales between the velocity and thermal fields similar to that obtained using the dynamic Smagorinsky model with locally calculated model parameters. It is also shown that the proposed model predicts better mean and fluctuating temperature profiles in cooperation with the revised MTS model for the velocity field, than the Smagorinsky model and the dynamic Smagorinsky model. The present model is constructed with fixed model parameters, so that it does not suffer from computational instability with the dynamic model. Thus, it is expected to be a refined and versatile SGS model suited for practical LES of the thermal field.  相似文献   

16.
A large-eddy simulation (LES) technique has been used for the calculation of an air flow past a heated square cylinder. The LES method is a conventional one with the Smagorinsky eddy-viscosity model, and the computational grid is small enough to be handled by workstations. The computed turbulent flow field quantities agree well with the experimental results reported by Lyn et al. (J Fluid Mech 304:285–319, 1995). Particular attention has been spent to the convective heat transfer and the prediction of the thermal fluctuations in case of a fluid with Pr = 0.71. The LES results agree well with the empirical correlations proposed by Hilpert and Sparrow et al. for the average Nusselt number.  相似文献   

17.
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB–LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB–LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB–D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.  相似文献   

18.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

19.
In this study, large eddy simulation (LES) has been used to examine supersonic flow, mixing, self-ignition and combustion in a model scramjet combustor and has been compared against the experimental data. The LES model is based on an unstructured finite-volume discretization, using monotonicity-preserving flux reconstruction of the filtered mass, momentum, species and energy equations. Both a two-step and a seven-step hydrogen–air mechanism are used to describe the chemical reactions. Additional comparisons are made with results from a previously presented flamelet model. The subgrid flow terms are modeled using a mixed model, whereas the subgrid turbulence–chemistry interaction terms are modeled using the partially stirred reactor model. Simulations are carried out on a scramjet model experimentally studied at Deutsches Zentrum für Luft- und Raumfahrt consisting of a one-sided divergent channel with a wedge-shaped flame holder at the base of which hydrogen is injected. The LES predictions are compared with experimental data for velocity, temperature, wall pressure at different cross sections as well as schlieren images, showing good agreement for both first- and second-order statistics. In addition, the LES results are used to illustrate and explain the intrinsic flow, and mixing and combustion features of this combustor.  相似文献   

20.
We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure gradient flows. It is concluded that the present adverse pressure gradient boundary layers are far from an equilibrium state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号