首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptomyces coelicolor CH999/pJRJ2 harbors a plasmid encoding DEBS(KS1 degrees ), a mutant form of 6-deoxyerythronolide B synthase that is blocked in the formation of 6-deoxyerythronolide B (1, 6-dEB) due to a mutation in the active site of the ketosynthase (KS1) domain that normally catalyzes the first polyketide chain elongation step of 6-dEB biosynthesis. Administration of (2E,4S,5R)-2,4-dimethyl-5-hydroxy-2-heptenoic acid, N-acetylcysteamine thioester (6) an unsaturated triketide analogue of the natural triketide chain elongation intermediate to cultures of S. coelicolor CH999/pJRJ2 results in formation of a 16-membered macrolactone, which is isolated in the hemiketal form 33. The formation of the octaketide 33 indicates that the triketide substrate has been processed by DEBS module 2 as if it were a diketide analogue. The substrate specificity of this novel reaction has been explored by the incubation of three additional analogues of the unsaturated triketide 6, compounds 18, 31, and 32, with S. coelicolor CH999/pJRJ2, resulting in the formation of the corresponding macrolactones 34, 35, and 36. By contrast, the unsaturated triketide 10, lacking a methyl group at C-2, did not give rise to any detectable macrolactone product when incubated with S. coelicolor CH999/pJRJ2.  相似文献   

2.
6-Deoxyerythronolide B synthase (DEBS) is a modular polyketide synthase (PKS) responsible for the biosynthesis of 6-dEB (1), the parent aglycone of the broad spectrum macrolide antibiotic erythromycin. Individual DEBS modules, which contain the catalytic domains necessary for each step of polyketide chain elongation and chemical modification, can be deconstructed into constituent domains. To better understand the intrinsic stereospecificity of the ketoreductase (KR) domains, an in vitro reconstituted system has been developed involving combinations of ketosynthase (KS)-acyl transferase (AT) didomains with acyl-carrier protein (ACP) and KR domains from different DEBS modules. Incubations with (2S,3R)-2-methyl-3-hydroxypentanoic acid N-acetylcysteamine thioester (2) and methylmalonyl-CoA plus NADPH result in formation of a reduced, ACP-bound triketide that is converted to the corresponding triketide lactone 4 by either base- or enzyme-catalyzed hydrolysis/cyclization. A sensitive and robust GC-MS technique has been developed to assign the stereochemistry of the resulting triketide lactones, on the basis of direct comparison with synthetic standards of each of the four possible diasteromers 4a-4d. Using the [KS][AT] didomains from either DEBS module 3 or module 6 in combination with KR domains from modules 2 or 6 gave in all cases exclusively (2R,3S,4R,5R)-3,5-dihydroxy-2,4-dimethyl-n-heptanoic acid-delta-lactone (4a). The same product was also generated by a chimeric module in which [KS3][AT3] was fused to [KR5][ACP5] and the DEBS thioesterase [TE] domain. Reductive quenching of the ACP-bound 2-methyl-3-ketoacyl triketide intermediate with sodium borohydride confirmed that in each case the triketide intermediate carried only an unepimerized d-2-methyl group. The results confirm the predicted stereospecificity of the individual KR domains, while revealing an unexpected configurational stability of the ACP-bound 2-methyl-3-ketoacyl thioester intermediate. The methodology should be applicable to the study of any combination of heterologous [KS][AT] and [KR] domains.  相似文献   

3.
Picromycin/methymycin synthase (PICS) is a modular polyketide synthase (PKS) that is responsible for the biosynthesis of both 10-deoxymethynolide (1) and narbonolide (2), the parent 12- and 14-membered aglycone precursors of the macrolide antibiotics methymycin and picromycin, respectively. PICS module 2 is a dehydratase (DH)-containing module that catalyzes the formation of the unsaturated triketide intermediate using malonyl-CoA as the chain extension substrate. Recombinant PICS module 2+TE, with the PICS thioesterase domain appended to the C-terminus to allow release of polyketide products, was expressed in Escherichia coli. Purified PICS module 2+TE converted malonyl-CoA and 4, the N-acetylcysteamine thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid, to a 1:2 mixture of the triketide acid (4S,5R)-4-methyl-5-hydroxy-2-heptenoic acid (5) and (3S,4S,5R)-3,5-dihydroxy-4-methyl-n-heptanoic acid-delta-lactone (10) with a combined kcat of 0.6 min(-1). The triketide lactone 10 is formed by thioesterase-catalyzed cyclization of the corresponding d-3-hydroxyacyl-SACP intermediate, a reaction which competes with dehydration catalyzed by the dehydratase domain. PICS module 2+TE showed a strong preference for the syn-diketide-SNAC 4, with a 20-fold greater kcat/K(m) than the anti-(2S,3S)-diketide-SNAC 14, and a 40-fold advantage over the syn-(2R,3S)-diketide-SNAC 13. PICS module 2(DH(0))+TE, with an inactivated DH domain, produced exclusively 10, while three PICS module 2(KR(0))+TE mutants, with inactivated KR domains, produced exclusively or predominantly the unreduced triketide ketolactone, (4S,5R)-3-oxo-4-methyl-5-hydroxy-n-heptanoic acid-delta-lactone (7). These studies establish for the first time the structure and stereochemistry of the intermediates of a polyketide chain elongation cycle catalyzed by a DH-containing module, while confirming the importance of key active site residues in both KR and DH domains.  相似文献   

4.
BACKGROUND: Polyketides are structurally diverse natural products with a range of medically useful activities. Non-aromatic bacterial polyketides are synthesised on modular polyketide synthase multienzymes (PKSs) in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We show that the ketoreductase (KR) domains of modules 5 and 6 of the erythromycin PKS, housed in the multienzyme subunit DEBS3, exert an unexpectedly low level of stereochemical control in reducing the keto group of a synthetic analogue of the diketide intermediate. This led us to construct a hybrid triketide synthase based on DEBS3 with ketosynthase domain ketosynthase (KS)5 replaced by the loading module and KS1. The construct in vivo produced two major triketide stereoisomers, one expected and one surprising. The latter was of opposite configuration at three out of the four chiral centres: the branching alkyl centre was that produced by KS1 and, surprisingly, both hydroxyl centres produced by the reduction steps carried out by KR5 and KR6 respectively. CONCLUSIONS: These results demonstrate that the epimerising activity associated with module 1 of the erythromycin PKS can be conferred on module 5 merely by transfer of the KS1 domain. Moreover, the normally precise stereochemical control observed in modular PKSs is lost when KR5 and KR6 are challenged by an unfamiliar substrate, which is much smaller than their natural substrates. This observation demonstrates that the stereochemistry of ketoreduction is not necessarily invariant for a given KR domain and underlines the need for mechanistic understanding in designing genetically engineered PKSs to produce novel products.  相似文献   

5.
Tylactone synthase (TYLS) is a modular polyketide synthase that catalyzes the formation of tylactone (1), the parent aglycone precursor of the macrolide antibiotic tylosin. TYLS modules 1 and 2 are responsible for the generation of antidiketide and triketide intermediates, respectively, each bound to an acyl carrier protein (ACP) domain. Each module harbors a ketoreductase (KR) domain. The stereospecificity of TYLS KR1 and TYLS KR2 has been determined by incubating each of the recombinant ketoreductase domains with reconstituted ketosynthase-acyltransferase [KS][AT] and ACP domains from the 6-deoxyerythronolide B synthase (DEBS) in the presence of the N-acetylcysteamine thioester of syn-(2S,3R)-2-methyl-3-hydroxypentanoate (6), methylmalonyl-CoA, and NADPH resulting in the exclusive formation of the ACP-bound (2R,3R,4S,5R)-2,4-methyl-3,5-dihydroxyhepanoyl triketide, as established by GC-MS analysis of the TMS ether of the derived triketide lactone 7. Both TYLS KR1 and KR2 therefore catalyze the stereospecific reduction of the 2-methyl-3-ketoacyl-ACP substrate from the re-face, with specificity for the reduction of the (2R)-methyl (D) diastereomer. The dehydration that is catalyzed by the dehydratase (DH) domains of TYLS module 2 to give the unsaturated (2E,4S,5R)-2,4-dimethyl-5-hydroxyhept-2-enoyl-ACP2 is therefore a syn elimination of water.  相似文献   

6.
Modular polyketide synthases such as 6‐deoxyerythronolide B synthase (DEBS) catalyze the biosynthesis of structurally complex natural products. Streptomyces coelicolor CH999/pJRJ2 harbors a plasmid encoding DEBS(KS10), a mutant form of 6‐deoxyerythronolide B synthase that is blocked in the formation of 6‐deoxyerythronolide B ( 1 , 6‐dEB) due to a mutation in the active site of the ketosynthase (KS1) domain that normally catalyzes the first polyketide chain‐elongation step of 6‐dEB biosynthesis. Administration of (2S,3R,4S)‐ and (2S,3R,4R)‐3‐hydroxy‐2,4‐dimethylhexanoic acid N‐acetylcysteamine (SNAC) thioesters (= S‐[2‐(acetylamino)ethyl] (2S,3R,4S)‐ and (2S,3R,4R)‐3‐hydroxy‐2,4‐dimethylhexanethioates) 3 and 4 in separate experiments to cultures of Streptomyces coelicolor CH999/pJRJ2 led to production of the corresponding (14S)‐ and (14R)‐14‐methyl analogues of 6‐dEB, 10 and 11 , respectively. Unexpectedly, when a 3 : 2 mixture of 4 and 3 was fed under the same conditions, exclusively branched‐chain macrolactone 11 was isolated. In similar experiments, feeding of 3 and 4 to S. coelicolor CH999/pCK16, an engineered strain harboring DEBS1+TE(KS10), resulted in formation of the branched‐chain triketide lactones 13 and 14 , while feeding of the 3 : 2 mixture of 4 and 3 gave exclusively 14 . The biochemical basis for this stereochemical discrimination was established by using purified DEBS module 2+TE to determine the steady‐state kinetic parameters for 3 and 4 , with the kcat/KM for 4 shown to be sevenfold greater than that of 3 .  相似文献   

7.
Polyketide synthases (PKSs) catalyze the production of numerous biologically important natural products via repeated decarboxylative condensation reactions. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), consist of multiple catalytic modules, each containing a unique set of covalently linked catalytic domains. To better understand the engineering opportunities of these assembly lines, the extender unit and acyl carrier protein (ACP) specificity of keto synthase (KS) domains from modules 3 and 6 of DEBS were analyzed. These studies were undertaken with a newly developed didomain [KS][AT] construct, which lacks its own ACP domain and can therefore be interrogated with homologous or heterologous ACP or acyl-ACP substrates. By substituting the natural methylmalonyl extender unit with a malonyl group, a modest role was demonstrated for the KS in recognition of the nucleophilic substrate. The KS domain from module 3 of DEBS was found to exhibit a distinct ACP-recognition profile from the KS domain of module 6. On the basis of the above kinetic insights, a hybrid module was constructed ([KS3][AT3][KR5][ACP5][TE]) which displayed substrate recognition and elongation capabilities consistent with the natural module 3 protein. Unlike module 3, however, which lacks a ketoreductase (KR) domain, the hybrid module was able to catalyze reduction of the beta-ketothioester product of chain elongation. The high expression level and functionality of this hybrid protein demonstrates the usefulness of kinetic analysis for hybrid module design.  相似文献   

8.
Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxypyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed k(cat) 0.5 ± 0.1 min(-1) and K(m)(1) 19 ± 5 mM at 0.5 mM MM-CoA and k(cat)(app) 0.26 ± 0.02 min(-1) and K(m)(MM-CoA) 0.11 ± 0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(-)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with the recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2.  相似文献   

9.
《Chemistry & biology》1997,4(10):757-766
Background: Modular polyketide synthases (PKSs) are large multifunctional proteins that catalyze the biosynthesis of structurally complex bioactive products. The modular organization of PKSs has allowed the application of a combinatorial approach to the synthesis of novel polyketides via the manipulation of these biocatalysts at the genetic level. The inherent specificity of PKSs for their natural substrates, however, may place limits on the spectrum of molecular diversity that can be achieved in polyketide products. With the aim of further understanding PKS specificity, as a route to exploiting PKSs in combinatorial synthesis, we chose to examine the substrate specificity of a single intact domain within a bimodular PKS to investigate its capacity to utilize unnatural substrates.Results: We used a blocked mutant of a bimodular PKS in which formation of the triketide product could occur only via uptake and processing of a synthetic diketide intermediate. By introducing systematic changes in the native diketide structure, by means of the synthesis of unnatural diketide analogs, we have shown that the ketosynthase domain of module 2 (KS2 domain) in 6-deoxyerythronolide B synthase (DEBS) tolerates a broad range of variations in substrate structure, but it strongly discriminates against some others.Conclusions: Defining the boundaries of substrate recognition within PKS domains is crucial to the rationally engineered biosynthesis of novel polyketide products, many of which could be prepared only with great difficulty, if at all, by direct chemical synthesis or semi-synthesis. Our results suggest that the KS2 domain of DEBS1 has a relatively relaxed specificity that can be exploited for the design and synthesis of medicinally important polyketide products.  相似文献   

10.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

11.
BACKGROUND: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete. RESULTS: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea. CONCLUSIONS: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete-myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.  相似文献   

12.
Background: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete.Results: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea.Conclusions: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete–myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.  相似文献   

13.
Picromycin synthase (PICS) is a multifunctional, modular polyketide synthase (PKS) that catalyzes the conversion of methylmalonyl-CoA to narbonolide and 10-deoxymethynolide, the macrolide aglycone precursors of the antibiotics picromycin and methymycin, respectively. PICS modules 5 and 6 were each expressed in Escherichia coli with a thioesterase domain at the C-terminus to allow release of polyketide products. The substrate specificity of PICS modules 5+TE and 6+TE was investigated using N-acetylcysteamine thioesters of 2-methyl-3-hydroxy-pentanoic acid as diketide analogues of the natural polyketide chain elongation substrates. PICS module 5+TE could catalyze the chain elongation of only the syn diketide (2S,3R)-4, while PICS module 6+TE processed both syn diastereomers, (2S,3R)-4 and (2R,3S)-5, with a 2.5:1 preference in k(cat)/K(m) for 5 but did not turn over either of the two anti diketides. The observed substrate specificity patterns are in contrast to the 15-100:1 preference for 4 over 5 previously established for several modules of the closely related erythromycin PKS, 6-deoxyerythronolide B synthase (DEBS).  相似文献   

14.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII (module 5) and PikAIV (module 6) and assessed the ability of these proteins to generate tri- and tetraketide lactone products using N-acetylcysteamine-activated diketides and (14)C-methylmalonyl-CoA as substrates. Comparison of the stereochemical specificities for PikAIII and PikAIV and the reported values for the DEBS modules reveals significant differences between these systems.  相似文献   

15.
BACKGROUND: Polyketides are structurally diverse natural products that have a range of medically useful activities. Nonaromatic bacterial polyketides are synthesised on modular polyketide synthase (PKS) multienzymes, in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We have constructed bimodular and trimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only modules 1 and 2 and a thioesterase (TE), by substituting multiple domains with appropriate counterparts derived from the rapamycin PKS. Hybrid PKSs were obtained that synthesised the predicted target triketide lactones, which are simple analogues of cholesterol-lowering statins. In constructing intermodular fusions, whether between modules in the same or in different proteins, it was found advantageous to preserve intact the acyl carrier protein-ketosynthase (ACP-KS) didomain that spans the junction between successive modules. CONCLUSIONS: Relatively simple considerations govern the construction of functional hybrid PKSs. Fusion sites should be chosen either in the surface-accessible linker regions between enzymatic domains, as previously revealed, or just inside the conserved margins of domains. The interaction of an ACP domain with the adjacent KS domain, whether on the same polyketide or not, is of particular importance, both through conservation of appropriate protein-protein interactions, and through optimising molecular recognition of the altered polyketide chain in the key transfer of the acyl chain from the ACP of one module to the KS of the downstream module.  相似文献   

16.
Pinto A  Wang M  Horsman M  Boddy CN 《Organic letters》2012,14(9):2278-2281
Macrocyclic polyketide natural products are an indispensable source of therapeutic agents. The final stage of their biosynthesis, macrocyclization, is catalyzed regio- and stereoselectively by a thioesterase. A panel of substrates were synthesized to test their specificity for macrocyclization by the erythromycin polyketide synthase TE (DEBS TE) in vitro. It was shown that DEBS TE is highly stereospecific, successfully macrocyclizing a 14-member ring substrate with an R configured O-nucleophile, and highly regioselective, generating exclusively the 14-member lactone over the 12-member lactone.  相似文献   

17.
The dehydratase (DH) domain of module 4 of the 6-deoxyerythronolide B synthase (DEBS) has been shown to catalyze an exclusive syn elimination/syn addition of water. Incubation of recombinant DH4 with chemoenzymatically prepared anti-(2R,3R)-2-methyl-3-hydroxypentanoyl-ACP (2a-ACP) gave the dehydration product 3-ACP. Similarly, incubation of DH4 with synthetic 3-ACP resulted in the reverse enzyme-catalyzed hydration reaction, giving an ~3:1 equilbrium mixture of 2a-ACP and 3-ACP. Incubation of a mixture of propionyl-SNAC (4), methylmalonyl-CoA, and NADPH with the DEBS β-ketoacyl synthase-acyl transferase [KS6][AT6] didomain, DEBS ACP6, and the ketoreductase domain from tylactone synthase module 1 (TYLS KR1) generated in situ anti-2a-ACP that underwent DH4-catalyzed syn dehydration to give 3-ACP. DH4 did not dehydrate syn-(2S,3R)-2b-ACP, syn-(2R,3S)-2c-ACP, or anti-(2S,3S)-2d-ACP generated in situ by DEBS KR1, DEBS KR6, or the rifamycin synthase KR7 (RIFS KR7), respectively. Similarly, incubation of a mixture of (2S,3R)-2-methyl-3-hydroxypentanoyl-N-acetylcysteamine thioester (2b-SNAC), methylmalonyl-CoA, and NADPH with DEBS [KS6][AT6], DEBS ACP6, and TYLS KR1 gave anti-(2R,3R)-6-ACP that underwent syn dehydration catalyzed by DEBS DH4 to give (4R,5R)-(E)-2,4-dimethyl-5-hydroxy-hept-2-enoyl-ACP (7-ACP). The structure and stereochemistry of 7 were established by GC-MS and LC-MS comparison of the derived methyl ester 7-Me to a synthetic sample of 7-Me.  相似文献   

18.
6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase (PKS) that catalyzes the biosynthesis of 6-deoxyerythronolide B (6-dEB), the aglycon precursor of the antibiotic erythromycin. The biosynthesis of 6-dEB exemplifies the extraordinary substrate- and stereo-selectivity of this family of multifunctional enzymes. Paradoxically, DEBS has been shown to be an attractive scaffold for combinatorial biosynthesis, indicating that its constituent modules are also very tolerant of unnatural substrates. By interrogating individual modules of DEBS with a panel of diketides activated as N-acetylcysteamine (NAC) thioesters, it was recently shown that individual modules have a marked ability to discriminate among certain diastereomeric diketides. However, since free NAC thioesters were used as substrates in these studies, the modules were primed by a diffusive process, which precluded involvement of the covalent, substrate-channeling mechanism by which enzyme-bound intermediates are directly transferred from one module to the next in a multimodular PKS. Recent evidence pointing to a pivotal role for protein-protein interactions in the substrate-channeling mechanism has prompted us to develop novel assays to reassess the steady-state kinetic parameters of individual DEBS modules when primed in a more "natural" channeling mode by the same panel of diketide substrates used earlier. Here we describe these assays and use them to quantify the kinetic benefit of linker-mediated substrate channeling in a modular PKS. This benefit can be substantial, especially for intrinsically poor substrates. Examples are presented where the k(cat) of a module for a given diketide substrate increases >100-fold when the substrate is presented to the module in a channeling mode as opposed to a diffusive mode. However, the substrate specificity profiles for individual modules are conserved regardless of the mode of presentation. By highlighting how substrate channeling can allow PKS modules to effectively accept and process intrinsically poor substrates, these studies provide a rational basis for examining the enormous untapped potential for combinatorial biosynthesis via module rearrangement.  相似文献   

19.
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.  相似文献   

20.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl cysteamine (NAC) thioesters and have used them as substrates for in vitro conversions with engineered PikAIII+TE and in combination with native PikAIII (module 5) and PikAIV (module 6) multifunctional proteins. This investigation demonstrates directly the remarkable ability of these monomodules to catalyze one or two chain extension reactions, keto group processing steps, acyl-ACP release, and cyclization to generate 10-deoxymethynolide and narbonolide. The results reveal the enormous preference of Pik monomodules for their natural polyketide substrates and provide an important comparative analysis with previous studies using unnatural diketide NAC thioester substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号