共查询到20条相似文献,搜索用时 10 毫秒
1.
Summary New polyacrylate liquid crystalline compounds were coated onto glass or fused-silica capillary columns as stationary phases and applied to supercritical fluid chromatography. These stationary phases, were very stable: no bleeding was observed at 200°C and up to 200kg/cm2 pressures of carbon dioxide mobile phase. The wide working range of the capillary column was extended below the g-n transition temperature. Isomeric compounds such as - and -methoxynaphthalene, anthracene and phenanthrene and several phenolic compounds were separated. 相似文献
2.
Summary The dependence of the capacity factor of polycyclic aromatic hydrocarbons on column temperature and on the density of the mobile phase in supercritical-fluid chromatography was investigated using carbon dioxide as the mobile phase. Logarithmic capacity factors of polycyclic aromatic hydrocarbons were obtained as a linear function of the reciprocal column temperature at a constant molar volume of carbon dioxide.The application of the Retention Prediction System to supercritical-fluid chromatography is demonstrated: one can predict the retention of polycyclic aromatic hydrocarbons using equations including column temperature, density and the physico-chemical properties of the solutes as the parameters. 相似文献
3.
Dongjin Pyo 《Microchemical Journal》2001,68(2-3)
A new device to accurately deliver a small amount of methanol into supercritical carbon dioxide fluid is described. Carbon dioxide, the most widely used mobile phase in supercritical fluid chromatography, is a relatively non-polar fluid, and hence the addition of a small amount of methanol could change the solvent strength of the mobile phase. In this work, supercritical CO2 and methanol are delivered from the pump to a 100-μl mixing chamber in which a small magnetic bar is rotating. After passing through the mixing chamber, supercritical CO2 is changed to a new mobile phase with different polarity. The modified mobile phase was successfully used for the separations of polar compounds and polyaromatic hydrocarbons (PAHs). 相似文献
4.
Summary We have investigated to which extent retention data, acquired on single capillary columns, can be used for predicting retention factors in a coupled column system. For this purpose we utilized a model mixture of 18 lipid components with widely different vapor pressures and polarities. The sample was chromatographed on two columns, SB-biphenyl-30 (70% methyl-30% biphenylpolysiloxane) and SB-cyanopropyl-50 (50% methyl-50% cyanopropylsiloxane). Experimental retention factors, acquired in coupled column systems with two columns connected in different order, were thus compared with values calculated from runs on each single column. The agreement between calculated and experimental values generally was better than 5% without any pressure drop correction.To study the possibility of predicting retention behavior in a wide pressure range from a limited number of experiments, we also investigated the relation between solute retention and mobile phase density. We found that all data could be fitted to second order equations, which gives the possibility to optimize the resolution with respect to pressure from a limited number of runs at different pressures. 相似文献
5.
Supercritical fluid chromatography (SFC) sometimes exhibits GC-like behavior and sometimes LC-like behavior, depending on conditions. However, it is not always clear whether one of these types of behavior, or a combination, operates for a particular set of conditions for every solute in a mixture. For example, some components may be partitioned mostly by their vapor pressures, while others, in the same mixture, are partitioned predominantly by solvent-like properties of the mobile phase. Plots of retetion (as log of the capacity factor) vs. reciprocal temperature at constant pressure reveal a clear change in the character of the separation of well-behaved solutes. A thermodynamic explanation of the observed behavior is given, based on the assumption that partitioning is controlled by the heats of solution of solute in the mobile and stationary phases. A model of SFC retention as it deviates from pure-GC behavior on the same column is presented. 相似文献
6.
The three-component mobile phase, methanol-acetonitrile-water, has been frequently used for the separation of natural products in complicated herbal extracts by reversed-phase liquid chromatography, especially when two-component solvent systems do not work. However, the rational for optimization of this three-solvent system is not clear, so far. In this study, the retention behavior of different types of natural products in RP-LC with a methanol-acetonitrile-water elution system was studied. A total of 27 compounds from four classes, including steroids, flavonoids, phenolic acids, and triterpene saponins were analyzed by high-performance liquid chromatography coupled with mass spectrometry or ultraviolet detectors. It was interesting to find that prolonged retention times and improved separation capabilities were obtained when the acetonitrile-to-methanol ratio was 3-16%. This rule applied to all four classes of natural products under different instrumental conditions, and could be valuable for the separation of natural products in complicated samples. 相似文献
7.
Summary The application of alkylarylketones and n-alkanes as retention index scale standards in supercritical fluid chromatography has been examined using a packed polystyrene-divinylbenzene column. The two scales gave comparable results but the alkylarylketone scale gave comparable results but the alkylarylketone scale was considered to have a wider application as it could also be used when modifiers were added to the mobile phase. The changes in the retention indices of a number of aromatic test compounds were used to compare the selectivity of the separation under different temperature and pressure conditions and in the presence of modifiers. 相似文献
8.
9.
10.
Summary The capabilities of sulfur hexafluoride as a mobile phase for supercritical-fluid chromatography are investigated. An evaluation
of its overall utility on the basis of separations of standard aromatic hydrocarbon odel mixtures performed on a variety of
bonded-phase, packed columns with UV detection is presented. The dependence of separation performance upon operational parameters
is also examined. A comparative evaluation of the chroamtographic properties of supercitrical sulfur hexafluoride and those
of supercritical carbon dioxide is developed from these separations under corresponding supercritical state conditions. 相似文献
11.
12.
Summary Evaporative light scattering detectors can be used to detect organic substances without chromophoric groups in packed column supercritical fluid chromatography (SFC). A detector of this type has been used to detect squalane and glucose after SFC with various packed columns and binary mobile phases. In this study, the amount of organic modifier in carbon dioxide/modifier mixtures was varied. The results give further insight into the mechanisms that influence retention behaviour in packed column separations with super- and subcritical mobile phases. Squalane is an ideal non-polar test solute which shows long retention times on non-polar columns while its elution can be accelerated by non-polar modifiers in carbon dioxide. Glucose is an extremely polar solute containing hydroxyl groups. Elution of this sugar can be improved with polar modifiers. Column packings with polar end groups lead to high capacity ratios and long retention times for glucose. Most columns used in this study contained silica-based packing materials. For purposes of comparison, a polymeric packing (HEMA RP-18) was also employed. 相似文献
13.
Summary Evaporative light scattering detectors have, in recent years, gained acceptance in chromatography with dense mobile phases i.e. liquid and supercritical fluid chromatography. In the present work an instrument of this type has been used in packed column supercritical fluid chromatography with carbon dioxide/methanol mixtures. Detector response and signal-to-noise ratios have been determined using squalane as test compound. Nebulizer gas flow, evaporator temperature, photomultiplier sensitivity, and mobile phase composition were found to have an influence on instrument performance. With this type of detector the field of packed column SFC applications can be extended to include non-UV-absorbing substances even when mixed mobile phases or composition gradients are necessary for the separation. 相似文献
14.
In an effort to gain enhancement of selectivity in reversed-phase liquid chromatography, retention was tuned in this study by introducing short and medium straight-chained-length alkanol additives (methanol (MeOH), ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol or 1-heptanol) at low concentrations in mobile phases containing MeOH as the main organic solvent. A six-parameter retention model considering simultaneously the contents of the main organic modifier and of the alcohol additive as well as of the number of alkyl chain of additive was developed by a direct combination of equations expressing separately a linear dependence of the retention upon each of these factors. The effectiveness of the above model was tested in the retention prediction of a mixture of six alkylbenzenes under isocratic conditions with mobile phases containing as an additive any member of the homologues series of alkanols (with 1-7 carbon atoms) at different low concentrations in a wide range of MeOH-water mixtures. The prediction was excellent in all cases even when the alkanol additives used in experiments for the fitting procedure are different than those used in chromatographic runs done for testing the prediction ability of the proposed model. 相似文献
15.
Summary An ion mobility detector (IMD) was evaluated for open tubular column supercritical fluid chromatography (SFC) when organic solvent-modified supercritical CO2 was used as mobile phase. It was found that the SFC/IMD interface design in which the SFC capillaray restrictor was directly inserted into the ionization region of the IMD was not acceptable because of low sensitivity that resulted from the effect of the modifier on detector temperature and mechanism of detection. A new interface utilizing a heated nebulizer gas to provide heat to the restrictor and to minimize the formation of ion clusters, and a bent nozzle for enhancing the ionization efficiency of the solute in the IMD ion source are described. Using 5% acetonitrile in CO2, the minimum detectable quantity (S/N=3) for pyrene was improved from 25.2 ng to 2.1 ng with the new detector design. This compares to a minimum detectable quantity of 0.1 ng when using neat CO2 as mobile phase. The use of molecular connectivity calculations to predict the drift times of selected analytes is also successfully demonstrated. 相似文献
16.
Summary Effects of column temperature on the retention behaviour of aromatic hydrocarbons and dialkyl phthalates were investigated in capillary supercritical fluid chromatography (SFC) with carbon dioxide as the mobile phase. Negative temperature programming could partly replace pressure programming. Positive temperature programming was applicable to solutes with proper volatility, in which gas chromatography-like retention mechanism (partition process) was involved. 相似文献
17.
SHEN Yu-Feng WANG Qing-Hai ZHU Dao-Qian ZHOU Liang-Mo Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning China 《中国化学》1994,12(2):129-137
The study on retention behavior in supercritical fluid chromatography (SFC) is necessary to understand the mechanism of the various interactions in SFC. The retention of SFC in carboxylic acid methyl ester/polymethylsiloxane/CO2 system was studied systematically and the retention behavior of this kind of compounds under various typical operation conditions was described using the method of an alternative unified theory of chromatographic retention. The results illustrated that expression: Ink.= a + b/T + cp + dp/T + ep2/T can be used to describe quantitatively the retention behavior of carboxylic acid methyl ester/polymethylsiloxane/CO2 system in the ranges of reduced density from 0.549 to 1.411. It was also found that the entropy of solute in stationary phase is dependent on the density of supercritical fluid (SF) under typical operating conditions of SFC. 相似文献
18.
A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE ® C18‐amide) was evaluated for use in supercritical fluid chromatography. The amide‐based column was compared with columns packed with bare silica, C18 silica, and a terminal‐amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five‐component test mixture, consisting of a group of drug‐like molecules was separated isocratically. The results show that the C18‐amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18‐amide column was able to provide baseline resolution of all the drug‐like probe compounds in a text mixture, while the other columns tested did not. 相似文献
19.
Summary In this paper, practical considerations of column efficiency, separation speed, thermal stability, and column polarity of
capillary columns packed with polybutadiene-coated zirconia were investigated under solvating gas chromatography (SGC) conditions
using carbon dioxide as mobile phase. When compared with results obtained from conventional porous octadecyl obtained from
conventional porous octadecyl bonded silica (ODS) particles, PBD-zirconia particles produced greater change in mobile phase
linear velocity with pressure than conventional ODS particles under the same conditions. The maximum plate number per second
(Nt) obtained with a 30 cm PBD-zirconia column was approximately 1.5 times higher than that obtained with an ODS column at 100
°C. Therefore, the PBD-zirconia phase is more suitable for fast separations than conventional ODS particles in SGC. Maximum
plate numbers per meter of 76,900 and 63,300 were obtained using a 57 cm×250 μm i.d. fused silica capillary column packed
with 3 μm PBD-zirconia at 50 °C and 100 °C, respectively. The PBD-zirconia phase was stable at temperatures up to 320 °C under
SGC conditions using carbon dioxide as mobile phase. Polarizable aromatic compounds and low molecular weight ketones and aldehydes
were eluted with symmetrical peaks from a 10 cm column packed with 3 μm PBD-zirconia. Zirconia phases with greater inertness
are required for the analysis of more polar compounds by SGC. 相似文献