首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Complexing polymer‐coated electrodes have been synthesized by oxidative electropolymerization of ethylenediamine tetra‐N‐(3‐pyrrole‐1‐yl)propylacetamide (monomer L ). The presence of four polymerizable pyrrole fragments on the same EDTA skeleton was thought to confer enhanced rigidity and controlled dimensionality to the resulting complexing materials, which were used for the electrochemical detection of Hg(II), Cu(II), Pb(II) and Cd(II) ions by means of the chemical preconcentration‐anodic stripping technique. The polyamide electrode material showed particularly a significant selectivity towards mercury ions, even in the presence of a large excess of other metal cations. Moreover, the use of imprinted polymer‐coated electrodes prepared by electropolymerization of L in the presence of metal cations turned out to significantly improve the detection limits, down to 5×10?10 mol L?1 for Hg(II) and Cu(II) species.  相似文献   

2.
《Electroanalysis》2017,29(3):880-889
A new method for modifying electrodes with Ag nanoparticles (AgNPs) using electrospray deposition for sensitive, selective detection of Zn(II), Cd(II), and Pb(II) in aerosol samples when combined with Bismuth and Nafion coating and square‐wave anodic stripping voltammetry (SWASV) is reported. Carbon stencil‐printed electrodes (CSPEs) fabricated on a polyethylene transparency (PET) sheet were produced for an inexpensive, simple to fabricate, disposable sensor that can be used with the microliter sample volumes for analysis. Sensor performance was improved by modifying the electrode surface with electrospray‐deposited AgNPs. The use of electrospray deposition resulted in more uniform particle dispersion across the electrode surface when compared to drop‐casting. Using AgNP‐modified electrodes combined with Bi and Nafion, experimental detection limits (LODs) of 5.0, 0.5, and 0.1 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively, were achieved. The linear working ranges were 5.0–400.0 μg L−1, 0.5–400.0 μg L−1, and 0.1–500.0 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively. Interference studies showed Cu(II) was the only metal that interfered with this assay but inference could be eliminated with the addition of ferricyanide directly to the sample solution. This electrochemical sensor was applied for the simultaneous determination of Zn(II), Cd(II), and Pb(II) within source particulate matter (PM) samples collected on filters using an aerosol test chamber.  相似文献   

3.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

4.
The antimony film microelectrode (SbFME) is presented for measuring trace heavy metal ions in combination with anodic stripping voltammetry. The SbFME was tested in model solutions of 0.01 M HCl containing Cd(II) and Pb(II) in the presence of dissolved oxygen. The microsensor exhibited good linear behavior in the examined concentration range 20 μg L−1 to 100 μg L−1 and LoD of 1.9 and 3.1 μg L−1 for Cd(II) and Pb(II), respectively. The suitability of SbFME for measuring trace levels of Cu(II) was demonstrated using the standard reference material of natural water exploiting the sensor's specific characteristic of low re‐oxidation signal for antimony.  相似文献   

5.
A disposable screen‐printed device containing working, auxiliary, and reference electrodes is proposed for the simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel. The working electrode was printed using an ink modified with 2‐benzothiazole‐2‐thiol organofunctionalized SBA‐15 silica, in order to increase sensitivity. The performance of this electrode was compared with that of bare and SBA‐15‐modified electrodes. After optimizing the experimental parameters, the device was applied in determination of the analytes in commercial ethanol fuel samples, using 0.10 mol L?1 KCl/ethanol ratios of 30 : 70 (v/v), with [H+]=10?5 mol L?1. After 5 min of preconcentration at ? 1.3 V (vs. pseudo‐Ag/AgCl), four well‐resolved signals were obtained, enabling simultaneous determination of the four analytes using a differential pulse anodic stripping voltammetry (DPASV) procedure. The limits of detection were 0.30, 0.065, 0.030, and 0.046 µmol L?1 for Zn(II), Pb(II), Cu(II), and Hg(II), respectively. The results of these analyses were in agreement with those obtained using graphite furnace atomic absorption spectroscopy (GFAAS) for Pb(II), Cu(II), and Hg(II), and high‐resolution continuum source flame atomic absorption spectrometry (HR‐CS‐FAAS) for Zn2+, at a 95 % confidence level. Analytes originally present in the samples could be detected, and the interference of some cations and anions was evaluated.  相似文献   

6.
《Electroanalysis》2005,17(21):1970-1976
The oxidative electropolymerization of the (3‐pyrrol‐1‐ylpropyl)malonic acid monomer 1 is a simple and reproducible one‐step procedure for the synthesis of complexing polymer film modified electrodes, which have been applied to the electroanalysis of Cu(II), Pb(II), Cd(II) and Hg(II) ions by preconcentration upon complexation, followed by anodic stripping analysis. The detection limits were determined from square‐wave voltammetry at 0.5 nM, 5 nM, 50 nM and 0.2 μM for Pb(II), Cu(II), Hg(II) and Cd(II), respectively, after 10 min preconcentration. The modified electrodes showed a better selectivity toward copper(II) ions. Analysis of copper in a tap water sample agreed well with ICPMS analysis results.  相似文献   

7.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

8.
The complexing ability of thin poly(3-pyrrol-1-ylpropyl)malonic acid films coated onto glassy carbon disc electrode surfaces was evaluated towards Pb(II) and Cu(II) ions, using the chemical preconcentration-anodic stripping method. The affinity of these metal cations for the complexing film modified electrodes and their maximal surface coverage rate could be evaluated from a Langmuir isotherm model coupled to the chemical preconcentration-anodic stripping technique. Isothermal studies conducted between 293 and 308 K allowed to estimate enthalpy and entropy variations associated to the metal sorption, which expectedly proved to fit chemisorption processes. As judged from the estimated binding constants, Pb(II) ions turned out to present a higher affinity for the functionalized surface than the smaller Cu(II) species. The mobilization of a higher number of malonic acid units per metal cation upon complexation of Pb(II), as compared to Cu(II), is however believed to account for the estimated lower Pb(II) surface coverage. The combination of the Langmuir isotherm model to the chemical preconcentration-anodic stripping technique is thus revealed to be an efficient method to characterize the complexing ability of complexing film electrode surface.  相似文献   

9.
A new and efficient Hg(II) back-elution method for the desorption of Cd, Cu, and Pb from Chelex-100 chelating resin was developed. A smaller eluent volume and shorter elution time can be achieved using an Hg(II) containing eluent rather than pure nitric acid. Owing to the remaining Hg(II) ion in the effluent, a mercury thin-film electrode is formed in-situ during the anodic stripping voltammetric determination without any further addition of Hg(II). The results indicate that all the analytes in seawater matrix can be completely adsorbed on Chelex-100 resin from the sample at pH 6.5, and subsequently eluted from the resin with an acid solution of 5 × 10–4 mol/L Hg2+ + 1 mol/L HClO4. The detection limits obtained from the differential-pulse anodic (μg L–1 to ng L–1) stripping voltammetry are at sub-ppb to ppt (μg L–1 to ng L–1) levels permitting to determine Cd, Cu and Pb traces in seawater. The analytical reliability was confirmed by the analysis of the certified reference material CASS-II (open ocean seawater). Received: 22 April 1997 / Revised: 5 August 1997 / Accepted: 7 August 1997  相似文献   

10.
The application of protective overoxidized poly‐1‐naphtylamine membrane (ONAP) is demonstrated in combination with bismuth film microelectrode (ONAP‐BiFME) for anodic stripping voltammetric measurement of trace heavy metals in the presence of some selected surfactants. The ONAP membrane was electrochemically deposited on the surface of bare single carbon fiber microelectrode followed by the in situ or ex situ preparation of the bismuth film. The key operational parameters influencing the stripping performance of the ONAP‐BiFME were optimized and its electroanalytical performance was examined in the model solution containing Cd(II) and Pb(II) as test metal ions. The ONAP‐BiFME exhibited significantly enhanced stripping voltammetric response (approximately 70% for Cd(II) and 45% for Pb(II)) in comparison with unmodified BiFME in the absence of surfactants. In the presence of high concentrations, e.g., 20 mg L?1, of anionic or cationic surfactants, the stripping signal for, e.g., Cd(II) decreased for less than 6% at the ONAP‐BiFME, whereas at the unmodified BiFME the signal attenuated considerably (approximately 38%). Moreover, in the presence of 10 mg L?1 of nonionic surfactant Triton X‐100, the stripping signals at the bare BiFME were almost completely suppressed, whereas at the ONAP‐BiFME exhibited linear concentration behavior in the examined concentration range from 10 to 120 μg L?1, with the calculated limit of detection of 5.0 μg L?1 and 3.4 μg L?1 for Cd(II) and Pb(II), respectively in connection with 60 s accumulation time. The attractive behavior of ONAP‐modified BiFME expands the applicability of bismuth‐based electrodes for measurement of trace heavy metals in real environments, where the presence of more complex matrix can be expected.  相似文献   

11.
Synthesis of Mesoporous Lanthanum Phosphate and Its Use as a Novel Sorbent   总被引:2,自引:0,他引:2  
Mesoporous lanthanum phosphate was synthesized by supramolecular self-assembly of cetyltrimethylammo-nium bromide and lanthanum nitrate following digestion in phosphoric acid.TGA-DTA,XRD and SEM were em-ployed to study the uncalcined and calcined materials.Sorption behavior of Cr(Ⅲ),Mn(Ⅱ),Fe(Ⅲ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ba(Ⅱ),Hg(Ⅱ)and Pb(Ⅱ)cations was studied on such materials in water,3 mol·L~(-1)ammonia,0.01 mol.L~(-1)potassium ferrocyanide and 0.01 mol·L~(-1)potassium ferricyanide solutions.  相似文献   

12.
《Electroanalysis》2018,30(9):2004-2010
The performance of screen‐printed electrodes modified in situ with tellurium film for the anodic stripping voltammetric (ASV) determination of Cu(II) is reported. It was found that two types of screen‐printed substrates, namely carbon and mesoporous carbon, were optimal for this application. The selected in situ tellurium film modified electrodes were applied for the square wave ASV determination of copper at μg L−1 concentration levels. Well‐defined and reproducible Cu oxidation stripping peaks were produced at a potential more negative than the anodic dissolution of tellurium. The highest sensitivity of Cu determination was achieved in 0.05 M HCl containing 50 μg L−1 Te(IV) after 300 s of accumulation at −0.5 V. Using the optimized procedure, a linear range from 2 to 35 μg L−1 of Cu(II) was obtained with a detection limit of 0.5 μg L−1 Cu(II) (S/N=3) for 300 s of deposition time. Both sensors, carbon TeF‐SPE and mesoporous carbon TeF‐SPE, were successfully applied for the quantification of Cu in a certified reference surface water sample.  相似文献   

13.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

14.
This work describes a sequential injection analysis (SIA) method for on-line strippping voltammetric determination of Pb(II), Cd(II) and Zn(II) using an injection-moulded electrochemical fluidic chip consisting of 3 conductive carbon fiber-loaded polymer electrodes embedded in a plastic fluidic holder. The sample containing the target metals and a solution containing Bi(III) were aspirated in the holding coil of the SIA manifold. Then, the flow was reversed and the two solutions were directed to the fluidic cell through a mixing coil which induced mixing of the two zones. Upon reaching the cell, simultaneous reduction of the target metals and Bi(III) occurred resulting in the formation of a metal-Bi alloy on the working electrode. Finally, the accumulated metals were stripped off the bismuth-film electrode via a positive potential scan and the oxidation current was recorded. The experimental variables (concentration of the bismuth plating solution, deposition potential, sample volume, stripping mode) were investigated and the potential interferences were assessed. The limits of quantification were 2.8 μg L−1 for Pb(II), 3.6 μg L−1 for Cd(II) and 4.2 μg L−1 for Zn(II) and the the within-chip and between-chip % relative standard deviations were ≤6.3 % and ≤14 %, respectively. Finally, the sensor was applied to the determination of trace metals in a fish food sample.  相似文献   

15.
An in-situ antimony film screen-printed carbon electrode (in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L−1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples.  相似文献   

16.
This paper describes the development and validation of a sequential injection (SI) anodic stripping voltammetry (ASV) method using the hanging mercury drop electrode for accumulation of the heavy metal cations Cu(II), Pb(II) and Cd(II). The method was applied to wastewater samples after proper acid digestion in open vessels to eliminate matrix effects. For a deposition time of 90 s at the flow rate of 10 μl s−1, the detection limits of the method were 0.06, 0.09 and 0.16 μmol L−1 for Cd, Pb and Cu, respectively. Under these conditions the linear dynamic range was between 0.20 and 9.0 μmol L−1 and the sampling frequency was 30 analyses per hour. The relative standard deviation of the method was 3%(n=7) at the concentration level of 2.0 μmol L−1. The accuracy of the method was evaluated by spiking the samples with known amounts of the metal cations, and by comparison with an independent analytical technique, the inductively coupled plasma atomic emission spectroscopy (ICP-AES). Average recoveries were around of 84%, and the results showed no evidence of systematic errors in comparison to the ICP-AES.  相似文献   

17.
Bismuth film electrode (BiFE) is presented as a promising alternative to mercury electrodes for the simultaneous determination of trace cobalt and nickel in non-deoxygenated solutions. The preplated BiFE was employed under adsorptive stripping constant current chronopotentiometric and adsorptive stripping voltammetric conditions in the presence of dimethylglyoxime complexing agent. BiFE exhibited well-defined and undistorted signals with favorable overall resolution for cobalt and nickel cations, with the signals for both metal cations being practically independent of each other. The stripping performance of BiFE is characterized by good reproducibility (RSD 1.4% for Co(II), and 4.3% for Ni(II)), low detection limits of 0.08 μg l−1 for Co(II) and 0.26 μg l−1 for Ni(II) employing a deposition time of 60 s, in addition to good linearity. The non-toxic character of bismuth imparts the possibility of tailoring disposable and one-shot electrochemical sensors for decentralized environmental, clinical and industrial monitoring of trace cobalt and nickel.  相似文献   

18.
An electrochemical sensor (CPE-IIHP) was developed for Cd(II) using a carbon paste electrode (CPE) impregnated with an ion-imprinted hybrid polymer (IIHP). A CPE-NIHP was also prepared for comparison. DPASV was used to optimize the sensor response and quantify Cd(II). The sensor presented a wide linear range from low concentrations of Cd(II): 1 to 100 μg L−1 and high concentrations of Cd(II): 2.75 to 5.0 mg L−1. Ions such as Co(II), Pb(II), Ni(II), Zn(II), Fe(II), Fe(III), Sn(II) and Cu(II), showed no variation in the Cd(II) signal. The CPE-IIHP was successfully applied in river and drinking water analysis, revealing the great potential for its application.  相似文献   

19.
Novel efficient complexing resins—poly(vinylbenzyl pyridinium salts) fabricated through poly(vinylbenzyl halogene-co-divinylbenzene) quaternization of N-decyloxy-1-(pyridin-3-yl)ethaneimine and N-decyloxy-1-(pyridin-4-yl)ethaneimine—were tested as adsorbents of Pb(II), Cd(II), Cu(II), Zn(II), and Ni(II) from aqueous solutions. The structure of these materials was established by 13C CP-MAS NMR, X-ray photoelectron spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy, as well as thermogravimetric and differential thermal analyses. The textural properties were determined using scanning electron microscopy and low-temperature N2 sorption. Based on the conducted sorption studies, it was shown that the uptake behavior of the metal ions towards novel resins depended on the type of functionalities, contact time, pH, metal concentrations, and the resin dosage. The Langmuir model was investigated to be the best one for fitting isothermal adsorption equilibrium data, and the corresponding adsorption capacities were predicted to be 296.4, 201.8, 83.8, 38.1, and 39.3 mg/g for Pb(II), Zn(II), Cd(II), Cu(II), and Ni(II), respectively. These results confirmed that owing to the presence of the functional pyridinium groups, the resins demonstrated proficient metal ion removal capacities. Furthermore, VBBr-D4EI could be successfully used for the selective uptake of Pb(II) from wastewater. It was also shown that the novel resins can be regenerated without significant loss of their sorption capacity.  相似文献   

20.
To find metal ion recognition by L (L = O2N2-donor naphthodiaza-crown macrocyclic ligand), the complexes [ML]2+ (M = Cd, Hg and Pb) were synthesized and characterized by IR, 1H, 13C NMR, and mass spectrometry, as well as elemental microanalysis. Hg(II) showed perceptible enhancement of the fluorescence of L in which ultra-low limit of detection for Hg(II) by L was determined as 1 nM in ethanol and DMSO. L reserved selectivity of Hg(II) in its binary mixtures with metal cations in solution. A 1 : 1 stoichiometry was found for the interaction of Hg(II) with L while Benesi–Hildebrand method was applied to calculate its complexation binding constant (KBH) employing fluorescence spectrophotometry. The monitoring of the chemical shifts in 1H NMR spectra of these complexes demonstrated that the central macrocycle of L was tailored for the size of Hg(II). Density functional theory calculations using B3LYP/6–31G* basis set demonstrated that the macrocycle cavity of L was properly fitted for complex formation with Hg(II) cation, while both Cd(II) and Pb(II) cations did not form strong bonds with L from inadequate cation size. The present study shows detection method of Hg(II) and also possible application of naphthodiaza as an appropriate fluorophore macrocyclic ligand for detecting other metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号