首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary: Temperature-induced and solvent composition-induced phase separation in solutions of poly(N-isopropylmethacrylamide) (PIPMAm) and other thermoresponsive polymers as studied by NMR and infrared (IR) spectroscopy is discussed. The fraction p of phase-separated units (units with significantly reduced mobility) and subsequently, e.g., thermodynamic parameters characterizing the coil-globule phase transition induced by temperature, were determined from reduced integrated intensities in high-resolution 1H NMR spectra. This approach can be especially useful in investigations of phase separation in solutions of binary polymer systems. Information on behaviour of water during temperature-induced phase transition was obtained from measurements of 1H NMR relaxation times of HDO molecules. NMR and IR spectroscopy were used to investigate PIPMAm solutions in water/ethanol (D2O/EtOH) mixtures where the phase separation can be induced by solvent composition (cononsolvency). Some differences in globular-like structures induced by temperature and solvent composition were revealed by these methods.  相似文献   

2.
The dynamic-structural changes and polymer - solvent interactions during the thermotropic phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of polymer concentrations (c = 0.1-60 wt.-%) were studied combining the measurements of 1H NMR spectra, spin-spin (T2) and spin-lattice (T1) relaxation times. Phase separation in solutions results in a marked line broadening of a major part of polymer segments, evidently due to the formation of compact globular-like structures. The minority (∼15%) mobile component, which does not participate in the phase separation, consists of low-molecular-weight fractions of PVME, as shown by GPC. Measurements of spin-spin relaxation times T2 of PVME methylene protons have shown that globular structures are more compact in dilute solutions in comparison with semidilute solutions where globules probably contain a certain amount of water. A certain portion of water molecules bound at elevated temperatures to (in) PVME globular structures in semidilute and concentrated solutions was revealed from measurements of spin-spin and spin-lattice relaxation times of residual HDO molecules.  相似文献   

3.
Combination of 1H NMR spectroscopy and differential scanning calorimetry (DSC) was used to investigate temperature-induced phase transition in D2O solutions of poly(N-isopropylmethacrylamide-co-acrylamide) random copolymers. Both the NMR and DSC data showed dependence on the acrylamide (AAm) content in the copolymer; with increasing AAm content, the phase transition is shifted to higher temperatures, and both phase-separated fractions determined by NMR and change of the enthalpy determined by DSC decrease faster than the content of thermosensitive N-isopropylmethacrylamide (NIPMAm) units in the copolymer. NMR data were used to construct van't Hoff plots, and changes of the enthalpy ΔH and entropy ΔS, characterizing the phase transition, were determined. As it follows from comparison of NMR and DSC thermodynamical parameters (ΔH values), the size of the cooperative units (domains), undergoing the transition as a whole, decreases with increasing AAm content in the copolymer since the NIPMAm collapsed domains are separated by regions with hydrated AAm and surrounding NIPMAm sequences.  相似文献   

4.
The phase transition and critical phenomenon of equilibrium swollen poly(N-isopropylacrylamide) (NIPA) hydrogels were studied by 1H NMR spectroscopy in liquid solution mode. The quantitative NMR observation shows that the peak height and line width of polymer proton and of the HOD proton, and relaxation times of HOD proton all transitionally change as the temperature approaches the transition temperature. The relaxation times of water protons are also measured quantitatively, which shows that the temperature dependence of relaxation times of HOD on temperature before the transition is not consistent with relaxation theory based on the assumption of dominated dipolar interaction between like-spin nuclei and isotropic rotational motion. To explain the surprising relaxation behavior of HOD, we suggest that the amount of bound water in gels increases gradually with temperature at the approach of the phase transition. The pulsed-gradient spin-echo NMR experiments of NIPA gel confirm this suggestion. We believe that these results have important implications concerning the mechanism of the phase transition of NIPA hydrogels.  相似文献   

5.
The structural‐dynamic changes and polymer‐solvent interactions during temperature‐induced phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of concentrations (0.1‐30 wt.‐%) were studied by 1H NMR methods. In the whole concentration range the phase transition is manifested by line broadening (linewidth 350‐500 Hz) of a major part of PVME units, evidently due to the formation of globular‐like structures. Above the LCST transition, the fraction of phase‐separated PVME segments is equal to 0.8±0.1, independent of polymer concentration. While at low concentrations the transition is virtually discontinuous, at high concentrations the transition region is ∼ 3 K broad. Measurements of nonselective and selective 1H spin‐lattice relaxation times T1 of solvent (HDO) molecules evidenced that at elevated temperatures, where most PVME forms globular structures, a part of solvent molecules is bound to PVME forming a complex; the lifetime of the bound water (HDO) molecules is ≤2 s.  相似文献   

6.
NMR, Raman spectroscopy and ab initio quantum-chemical calculations have been employed to investigate the role of the hydration water in the inverse temperature transition of elastin-derived biopolymers represented by poly(Gly-Val-Gly-Val-Pro) and poly(Ala-Val-Gly-Val-Pro). Temperature and concentration dependences of the Raman spectra measured for water solutions of polymers and of a low-molecular-weight model have been correlated with the vibrational frequencies calculated at the DFT (B3LYP) and MP2 levels for the peptide segment surrounded by a growing number of water molecules. The results indicate strong hydration before the transition that, in addition to water hydrogen-bonded to amide groups, includes hydrophobic hydration of non-polar groups by a dynamic cluster of several water molecules. According to 1H longitudinal and transverse relaxation of HOD signals in D2O solutions, the number of water molecules motionally correlated with the polymer is about 4 per one amino acid residue.  相似文献   

7.
The use of NMR spectroscopy in investigations of phase transitions in aqueous polymer solutions and gels is reviewed. Results on this subject as obtained mostly for thermoresponsive polymers (e.g., poly(N-isopropylacrylamide) and its copolymers, poly(N-isopropylmethacrylamide) and its copolymers, poly(vinyl methyl ether)) from temperature dependences of 1H and 13C NMR spectra, spin–lattice and spin–spin relaxation times, diffusion coefficients and NMR images are discussed.  相似文献   

8.
Some possibilities of NMR spectroscopy (mainly spin-spin relaxation) in investigations of hydration and other polymer-solvent interactions during the temperature-induced phase separation in aqueous polymer solutions are described. A certain portion of water molecules bound in phase-separated mesoglobules was revealed. The residence time of the bound HDO for poly(vinyl methyl ether) (PVME)/D2O solution (c = 6 wt%) is 1.2 ms. With time a slow release of originally bound water from the respective mesoglobules was observed. For highly concentrated PVME/D2O solutions (c = 20–60 wt%), the residence time of bound HDO ≫ 2.7 ms and fractions of bound water unchanged even for 70 h were found. A similar behaviour as described above for water (HDO) was also found for EtOH molecules in PVME/D2O/EtOH solutions.  相似文献   

9.
Solutions of poly(p-phenylene terephthalamide) in fuming sulfuric acid were characterized by 13C NMR spectroscopy and solution viscosity measurements over the 2–28% w/w concentration range. The spectra showed the presence of two distinct amide carbonyl resonances at low concentration, tentatively assigned to cis and trans conformations. As the concentration increased, additional carbonyl lines were observed along with significant broadening. Peak area measurements showed that only the polymer molecules in the isotropic environments contributed to the 13C NMR spectra and a considerable amount of the polymer remained in the isotropic phase at concentrations previously considered to consist of polymer in highly anisotropic regions. Spin-lattice relaxation times were measured at six concentrations using the inversion recovery method. The aromatic carbons relaxed at a much faster rate (ca. 0.10 s) than the carbonyls (ca. 0.45 s), but the relaxation rates for both carbons were essentially constant over the concentration range, indicating that the observed isotropic phase is not affected by changes in the macroscopic solution behavior so as to alter spin-lattice relaxation mechanisms.  相似文献   

10.
Solutions containing a polyoxy-ethylene/polyoxy-propylene/polyoxy-ethylene (PEO–PPO–PEO) block copolymer, indicated as F68, in water were investigated as a function of composition and temperature. Hydrogen nuclear magnetic resonance (1H NMR) line width, chemical shift, self-diffusion, spin-lattice relaxation times, laser light scattering and rheological methods were used. The monomer–micelle equilibrium and the micelle–liquid crystalline phase transitions depend on the F68 content in the mixture and temperature. Significant changes in light scattering intensity and apparent hydrodynamic radius are associated to micelle formation above the critical micellar temperature (CMT). According to a Contin analysis, this behaviour is reflected in the presence of two populations in the intensity–intensity autocorrelation functions. The contributions due to molecules and micelles can be evaluated separately. No such effects are observed below the CMT. Micelle onset is also associated to variations in 1H NMR spectra, affecting the chemical shift, line width and spin-lattice relaxation time of the PPO methyl protons and self-diffusion, as well. Spin-lattice relaxation times of PEO chains, conversely, change significantly at temperatures close to the micelle–liquid crystalline thermal transition. Similar results were obtained from the line width of 2H NMR spectra as a function of T. Significant changes in both viscous and elastic modulus were also observed and ascribed to PPO dehydration, at the CMT, as well as to squeezing and dehydration of PEO units in liquid crystal formation, respectively.  相似文献   

11.
1H NMR spectroscopy was applied to investigate temperature-induced phase separation in solutions of poly(N-isopropylmethacrylamide-co-acrylamide) [P(IPMAm/AAm)] random copolymers in D2O, D2O/ethanol and D2O/acetone. The NMR relaxation behaviour of water (HDO) was also examined. The effects of P(IPMAm/AAm) composition and the ethanol or acetone content in the mixed solvents on the temperature, width and extent of the phase transition as well as on the mobility of polymer segments and water molecules were characterized. For D2O solutions of the copolymers prepared with the AAm fraction in the polymerization mixture not exceeding 25 mol% 1H NMR spectra show dynamic heterogeneity of copolymer chains in mesoglobules where AAm sequences and surrounding short IPMAm sequences are hydrated and mobile, while sufficiently long IPMAm sequences are dehydrated and their mobility is strongly reduced. The obtained results are consistent with the idea that P(IPMAm/AAm) copolymer mesoglobules are rather porous and disordered.  相似文献   

12.
Sodium triflate/polyether urethane polymer electrolytes ranging in concentration from 0.05 molal to 1.75 molal have been investigated via 23Na static solid-state NMR. Room temperature spectra and spin lattice relaxation times were consistent with a single narrow resonance indicating the presence of only mobile ionic species. The concentration and temperature dependence of relaxation times, chemical shifts, and linewidth have been investigated. The results suggest either a single species or rapid exchange between a number of species (even at temperatures below the glass transition temperature, Tg). The linewidth decreases with increasing concentration of ions and remains temperature independent below Tg. Below Tg a maximum quadrupolar interaction constant of 2 MHz is calculated. The addition of plasticizer to the polymer electrolyte causes significant chemical shift changes that depend on the solvent donicity of the plasticizer. The linewidth and T1 relaxation times also depend on the Tg of the plasticized systems. Previous 23Na NMR literature results are reviewed and qualitative models developed to account for the variation in results. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Structural changes in the local conformation of poly(N-isopropylacrylamide) (PNiPA) during the thermally and solvent-induced coil-globule transitions in an aqueous solution were studied by using attenuated total reflection / infrared (ATR/IR) spectroscopy combined with density functional theory (DFT) calculation. DFT calculation makes it possible to connect the spectral changes observed during the transitions with the structural changes of the local conformation of polymer chains. The results suggest that some of the intramolecular C=O···H-N hydrogen bonds of amide groups are broken, and the changes in local conformations occur during the coil-globule transitions of PNiPA. In this paper, an overview of our recent studies on the coil-globule transitions of PNiPA is given for introducing a new idea that may explain the stimulus sensitivities of PNiPA in solutions; the solubility of segments concerning with the local conformation of repeating monomer units is changed by an external perturbation, and then the polymer system shows the coil-globule transition.  相似文献   

14.
Binary blends and pseudo complexes of cellulose acetate (CA) with vinyl polymers containing N-vinyl pyrrolidone (VP) units, poly(N-vinyl pyrrolidone) (PVP) and poly(N-vinyl pyrrolidone-co-vinyl acetate) [P(VP-co-VAc)], were prepared, respectively, by casting from mixed polymer solutions in N,N-dimethylformamide as good solvent and by spontaneous co-precipitation from solutions in tetrahydrofuran as comparatively poor solvent. The scale of miscibility and intermolecular interaction were examined for the blends and complexes by solid-state 13C-NMR spectroscopy. It was revealed that the formation of complexes was due to a higher frequency of hydrogen-bonding interactions between the residual hydroxyl groups of CA and the carbonyl groups of VP residues in the vinyl polymer component. From measurements of CP/MAS spectra and proton spin-lattice relaxation times (TH) in the NMR study, the existence of the hydrogen-bonding interaction was also confirmed for the miscible blends and the homogeneity of the mixing was estimated to be substantially on a scale within a few nanometers.  相似文献   

15.
The 13C NMR spin-lattice relaxation times (T1) of anhydroglucose units vary with the number of substituents, and the T1 values of unsubstituted anhydroglucose units of O-carboxymethylcellulose are longer than those of amylose. Those results indicate that in water, the rotational motions of anhydroglucose units of cellulose derivative are quite important local motions contributing to the 13C NMR spin-lattice relaxation, and within a cellulose chain, anhydroglucose units rotate with different degrees of freedom depending on their environment. Moreover, the 13C NMR spin-lattice relaxation data indicate that the mobilities of ionic substituents are dependent on substitution positions as well as their ionic interaction. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
Collapse of a poly(N-isopropylacrylamide)(PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very flat LCST phase separation line are theoretically studied on the basis of cooperative dehydration(simultaneous dissociation of bound water molecules in a group of correlated sequence),and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods.The transition becomes sharper with the cooperativity parameterσof hydration.Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves(LCST cononsolvency) with the mole fraction of methanol due to the competition is calculated and compared with the experimental data.Aqueous solutions of hydophobically-modified PNIPAM carrying short alkyl chains at both chain ends(telechelic PNIPAM) are theoretically and experimentally studied.The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation),and separate from the coil-globule transition line.Associated structures in the solution,such as flower micelles,mesoglobules and higher fractal assembly,are studied by USANS with theoretical modeling of the scattering function.  相似文献   

18.
The dc component Δn of the electric birefringence of poly(γ-benzyl-L -glutamate) in m-cresol is measured under an ac electric field at frequencies from 0.5 Hz to 200 kHz for solutions covering the dilute and semidilute regions. The dispersion curve indicates that at low frequencies Δn decreases with increasing frequency (low-frequency relaxation). For high-molecular-weight polymers at high concentration, Δn becomes negative at high frequency and its absolute value decreases with further increase in frequency (high-frequency relaxation). A unified theory for the two relaxations is developed on the basis of a model in which, in the semidilute regime, the rodlike polymer is confined in a cage formed by neighboring polymers and the lifetime of the cage lies between relaxation times of the two relaxations. The low-frequency relaxation is ascribed to end-over-end rotation of the polymer and the high-frequency relaxation to the rotation within a limited angle in the cage. The dependences of relaxation parameters on polymer concentration and molecular weight are reasonably explained by the theory.  相似文献   

19.
The possibilities of NMR spectroscopy in studies of interactions in polymer systems are demonstrated on the example of two types of macromolecular complexes: (i) By measuring 1H NMR high resolution line intensities, the formation of ordered associated structures of syndiotactic (s) poly(methyl methacrylate)(PMMA) in mixed solvents was quantitatively characterized. The obtained results permit us to assume that the mechanism by which the solvent affects self-association of s-PMMA involves specific interactions of the solvent molecules with PMMA units. Solid state high resolution 13C NMR spectra of associated s-PMMA gels were also measured and compared with the spectra of a solid s-PMMA sample. (ii) By using 13C solid state NMR spectroscopy, the differences in the structure of the amorphous and crystalline phases in pure poly(ethylene oxide) and its complexes with p-dichlorobenzene or p-nitrophenol were characterized. Prounounced differences also in the dynamic structure of the crystalline phase in these systems are indicated by the relaxation times T1(C), T(C) and T(H).  相似文献   

20.
Summary: Two polysaccharide systems were studied by solid-state NMR methods: (i) Chitin/glucan complexes. The 13C NMR spectra have shown that in samples isolated from the mushroom Pleurotus sp., the glucan content was always higher in stems than in pilei. While carbonyl lineshape in complex isolated from Aspergillus niger mycelium shows similar hydrogen bonding as in neat chitin, a significantly higher amounts of hydrogen bonding between carbonyl groups of chitin and hydroxy groups of glucan was found in complexes isolated from Pleurotus sp. (ii) Biodegradable starch/polycaprolactone (PCL) blends. From the relaxation times T1(H) and T1ρ(H) it follows that blends starch/PCL, starch/ester oligomers and starch formate/ester oligomers are phase-separated even on the scale 20–110 nm. On the contrary, starch formate/PCL blend is phase-separated on the scale 1–9 nm but homogeneously mixed on the scale 20–90 nm. Therefore formylation of starch significantly improves its miscibility with PCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号