首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Duong HA  Cross MJ  Louie J 《Organic letters》2004,6(25):4679-4681
[reaction: see text] A series of N-heterocyclic carbenes (NHCs) were evaluated as potential catalysts for the cyclotrimerization of isocyanates to afford isocyanurates. 1,3-Bis-(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) was found to be a highly efficient catalyst for the cyclotrimerization of a variety of isocyanates.  相似文献   

3.
The unique properties of N-heterocyclic carbenes (NHCs) have attracted much attention, mainly from theorists and organometallic chemists, the latter using them impressively as ligands for metals. Less well known, however, has been their suitability as excellent catalysts and nucleophilic reagents. Transesterification, nucleophilic aromatic substitution, and cycloaddition reactions are examples in which NHCs can play an important role. Asymmetric reactions using catalytic amounts of chiral NHCs are an efficient approach to optically active compounds. This minireview focuses on this aspect of the chemistry of NHCs.  相似文献   

4.
5.
Cationic gold carbonyl complexes supported by N-heterocyclic carbene ligands, SIDipp and IDipp, have been synthesized. [(SIDipp)Au(CO)][SbF(6)] has a linear, two-coordinate gold center. [(SIDipp)Au(CO)][SbF(6)] and [(IDipp)Au(CO)][SbF(6)] display ?ν(CO) values at 2197 and 2193 cm(-1), respectively. Computational studies on [(SIMe)Au(CO)](+) indicate the presence of a strong Au(I)-CO bond.  相似文献   

6.
A method for the synthesis and isolation of 1,1′-methylene-bis-(3-aryl-imidazol-2-ylidene) ligands, aryl = 2,6-diisopropyl-phenyl (DiPP), LDiPP, mesityl (mes), Lmes, is reported, which provides synthetically useful quantities of high purity. Derivatisation of LDiPP with chalcogenides gave the adducts LDiPPE2, E = S, Se, Te. Reaction of LDiPP with [Pd(tmeda)Me2], [Pt(μ-SMe2)Me2]2, [Ir(1,5-COD)(μ-Cl)]2/KPF6 and [NiBr2(dme)] gave [Pd(LDiPP)Me2] (1), [Pt(LDiPP)Me2] (2), [Ir(LDiPP)(1,5-COD)](PF6) (3) and [Ni(LDiPP)Br2] (4), respectively. The latter was reduced in the presence of CO to [Ni(LDiPP)(CO)2] (5). The structures of Lmes, LDiPPTe2, and 15 are also reported.  相似文献   

7.
Silver(I) complexes of heterobidentate ligands that incorporate one or two N-heterocyclic carbene moieties coupled with an alcohol or amine group have been made by direct deprotonation of ligands of the form [HOCR1R2CH2(1-HC{NCHCHNR})][X], H2L1X (X = Br, I), [H2NR1CHR2CHR2(1-HC{NCHCHNR})][Br]2 H3L2X2 (X = Cl, Br), and [H2N{CH2CH2(1-HC[NCHCHNMes])}2][X]3 H4L3X3 (X = Cl, Br). Silver(I) oxide is sufficiently basic to deprotonate both the imidazolium and the alcohol functional groups of all but one of the L1 ligand precursors, to afford rare examples of silver alkoxide complexes [Ag(L1)], stabilised by the soft donor carbene. Another complex of L1 is characterised as the carbene alcohol adduct [Ag(HL1)2I]. The analogous reactions of silver(I) oxide with the amino imidazolium precursors afford silver amino-carbenes [Ag(HL2)Br] with the potentially bidentate L2 ligand, and [Ag(HL3)X] (X = Cl, Br) with the potentially tridentate L3 ligand. A single crystal X-ray diffraction study of the latter complex confirms that the neutral amine of the potentially tridentate L3 ligand is unco-ordinated; instead the structure contains discrete chains of T-shaped silver bis(carbene) halide moieties that bridge to form a zig-zag 2-connected polymer. Protonolysis of two of the silver alkoxide and amino adducts, [Ag(L1a)] and [Ag(HL2a)Br], affords imidazolium complexes salts [H2L1a][AgCl2] and [Ag(H2L2a)Br][AgBr2] that retain the Ag(I) centre as complex counterions. The single crystal X-ray structures of these salts have been determined and show the silver(I) cations are now incorporated into ladders or chains as silver(I) halo-anions, and a silver amine dative bond is present in the latter complex.  相似文献   

8.
[reaction: see text] Two unprecedented multicomponent reactions of N-heterocyclic carbenes involving activated acetylenes and aldehydes are described.  相似文献   

9.
Various symmetrically and asymmetrically substituted N-heterocyclic carbene (NHC) ligands bearing aliphatic nitrogen-containing side groups have been synthesised. In our attempts to isolate the corresponding second-generation Grubbs catalysts, we were unsuccessful when using the symmetrical aliphatic NHC ligands. For the asymmetrical ligands bearing an aliphatic moiety on one side and an aromatic mesityl group on the other side, substitution of a phosphine ligand was achieved. The performance of a so-formed series of Ru-based metathesis initiators has been evaluated for the ring-opening metathesis polymerisation (ROMP) of cycloocta-1,5-diene and the ring-closing metathesis (RCM) of diethyl diallylmalonate.  相似文献   

10.
Peng HM  Song G  Li Y  Li X 《Inorganic chemistry》2008,47(18):8031-8043
A new type of quinoline-functionalized palladium N-heterocyclic carbene (NHC) complexes has been synthesized via silver transmetallation. The quinoline moiety was either directly attached to the imidazole ring or linked to it by a methylene group. NHCs with a methylene linker tend to form trans biscarbene complexes in the reaction of Pd(COD)Cl2, while NHCs without any linker form chelating NHC-quinoline (NHC-N) complexes. These two types of carbenes also react with [Pd(allyl)Cl]2 to give monodentate NHC palladium eta(3)-allyl chlorides [Pd(NHC)(allyl)Cl]. Fluxionality in the NMR time scale was observed for most complexes, and the origin of their dynamic behaviors was discussed for each type of structure. For [Pd(NHC)(allyl)Cl] with a relatively small wing tip group of the NHC, the fluxionality (selective line-broadening of (1)H NMR signals) is caused by selective eta(3)-eta(1)-eta(3) allyl isomerization. For NHC with a bulkier (t)Bu group, a different line-broadening pattern was observed and was ascribed to partially hindered Pd-C(carbene) bond rotation. For cationic chelating complexes [Pd(NHC-N)(allyl)]BF4, the dynamic exchange process likely originates from a dissociative boat-to-boat inversion of 7-membered palladacycles. Activation parameters were measured for this process. Crystal structures were reported for representative complexes in each category.  相似文献   

11.
12.
13.
In 2020, silicon – molecule – silicon junctions were fabricated and shown to be on average one third as conductive as traditional junctions made using gold electrodes, but in some instances to be even more conductive, and significantly 3 times more extendable and 5 times more mechanically stable. Herein, calculations are performed of single-molecule junction structure and conductivity pertaining to blinking and scanning-tunnelling-microscopy (STM) break junction (STMBJ) experiments performed using chemisorbed 1,6-hexanedithiol linkers. Some strikingly different characteristics are found compared to analogous junctions formed using the metals which, to date, have dominated the field of molecular electronics. In the STMBJ experiment, following retraction of the STM tip after collision with the substrate, unterminated silicon surface dangling bonds are predicted to remain after reaction of the fresh tips with the dithiol solute. These dangling bonds occupy the silicon band gap and are predicted to facilitate extraordinary single-molecule conductivity. Enhanced junction extendibility is attributed to junction flexibility and the translation of adsorbed molecules between silicon dangling bonds. The calculations investigate a range of junction atomic-structural models using density-functional-theory (DFT) calculations of structure, often explored at 300 K using molecular dynamics (MD) simulations. These are aided by DFT calculations of barriers for passivation reactions of the dangling bonds. Thermally averaged conductivities are then evaluated using non-equilibrium Green''s function (NEGF) methods. Countless applications through electronics, nanotechnology, photonics, and sensing are envisaged for this technology.

Single-molecule circuits using silicon contacts are robust, conductive, controllable, and highly reproducible in blinking experiments, with enhanced conductance in break-junctions owing to residual dangling bonds.  相似文献   

14.
《Tetrahedron letters》2014,55(34):4826-4829
A series of substituted triazene dyes were synthesized by coupling functionalized imidazol-2-ylidenes with various azides (alkyl, vinyl, aryl, and heteroaryl), in moderate to excellent yields. Their structures were confirmed by spectroscopic studies (IR, NMR, UV–vis, and HRMS). Additionally, the solid-state structure of triazene dye 7 was secured by single crystal X-ray diffraction. Electron delocalization between the two coupled components was studied using UV–vis spectroscopy. The respective triazenes were found to exhibit λmax values ranging between 294 and 450 nm.  相似文献   

15.
A new synthetic route to complexes of the cationic N-heterocyclic carbene ligand 2 has been developed by the attachment of a cationic pentamethylcyclopentadienylruthenium ([RuCp*](+)) fragment to a metal-coordinated benzimidazol-2-ylidene ligand. The coordination chemistry and the steric and electronic properties of the cationic carbene were investigated in detail by experimental and theoretical methods. X-ray structures of three carbene-metal complexes were determined. The cationic ligand 2 is a poorer overall electron donor relative to the related neutral carbene, which is evident from cyclic voltammetry (CV) and IR measurements.  相似文献   

16.
Gold(I) complexes bearing N-heterocyclic carbenes (NHC) of the type (NHC)AuBr (3a/3b) [NHC = 1-methyl-3-benzylimidazol-2-ylidene (= MeBnIm), and 1,3-dibenzylimidazol-2-ylidene (= Bn(2)Im)] are prepared by transmetallation reactions of (tht)AuBr (tht = tetrahydrothiophene) and (NHC)AgBr (2a/2b). The homoleptic, ionic complexes [(NHC)(2)Au]Br (6a/6b) are synthesized by the reaction with free carbene. Successive oxidation of 3a/3b and 6a/6b with bromine gave the respective (NHC)AuBr(3) (4a/4b) and [(NHC)(2)AuBr(2)]Br (7a/7b) in good overall yields as yellow powders. All complexes were characterized by NMR spectroscopy, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Reactions of the Au(III) complexes towards anionic ligands like carboxylates, phenolates and thiophenolates were investigated and result in a complete or partial reduction to a Au(I) complex. Irradiation of the Au(III) complexes with UV light yield the Au(I) congeners in a clean photo-reaction.  相似文献   

17.
Reaction of N-heterocyclic carbenes (NHCs) with isocyanates yields stable zwitterionic imidates/amidates in toluene solution. These compounds were fully characterized and the crystal structures of several species were determined by X-ray crystallography. The thermochemistry of binding of these and related species was studied by solution calorimetry. Comparison is made of the enthalpies of binding of NHC to isocyanates (RNCO) and isomeric nitrile oxides (RCNO) as well as CO2. DFT calculations were performed to additionally assess the nature of bonding in these compounds.  相似文献   

18.
A new biaryl phosphine-containing ligand from an active palladium catalyst for ppm level Suzuki–Miyaura couplings, enabled by an aqueous micellar reaction medium. A wide array of functionalized substrates including aryl/heteroaryl bromides are amenable, as are, notably, chlorides. The catalytic system is both general and highly effective at low palladium loadings (1000–2500 ppm or 0.10–0.25 mol%). Density functional theory calculations suggest that greater steric congestion in N2Phos induces increased steric crowding around the Pd center, helping to destabilize the 2 : 1 ligand–Pd(0) complex more for N2Phos than for EvanPhos (and less bulky ligands), and thereby favoring formation of the 1 : 1 ligand–Pdo complex that is more reactive in oxidative addition to aryl chlorides.

A new, biaryl phosphine-containing ligand, N2Phos, forms a 1 : 1 complex with Pd resulting in an active catalyst at the ppm level for Suzuki–Miyaura couplings in water, enabled by an aqueous micellar medium. Notably, aryl chlorides are shown to be amenable substrates.  相似文献   

19.
Carbonate sequestration technology is a complement of CO2 sequestration technology, which might assure its long-term viability. In this work, in order to explore the interactions between Mn2+ ion with several ligands and carbonate ion, we reported a spectrophotometric equilibrium study of complexes of Mn2+ with pyrazine, quinoxaline or phenazine and its carbonate species at 298 K. For the complexes of manganese(II)–pyrazine, manganese(II)–quinoxaline and manganese(II)–phenazine, the formation constants obtained were log β110 = 4.6 ± 0.1, log β110 = 5.9 ± 0.1 and log β110 = 6.0 ± 0.1, respectively. The formation constants for the carbonated species manganese(II)–carbonate, manganese(II)–pyrazine–carbonate, manganese(II)–quinoxaline–carbonate and manganese(II)–phenazine–carbonate complexes were log β110 = 5.1 ± 0.1, log β110 = 9.8 ± 0.1, log β110 = 11.7 ± 0.1 and log β110 = 12.7 ± 0.1, respectively. Finally, the individual calculated electronic spectra and its distribution diagram of these species are also reported. The use of N-donor ligand with π-electron-attracting activity in a manganese(II) complex might increase its interaction with carbonate ions.  相似文献   

20.
A new poly(1,4‐spirobifluorenylenevinylene) having advantage PPV and spirobifluorene as new emissive family was synthesized. Compared with PPV derivatives that usually have a tolane bisbenzyl defect, the polymer has the defect free structure because of the steric hindrance of the asymmetric bulky spirobifluorenyl group. Compared with spirobifluorene derivatives that usually have a low solubility, the polymer has the good solubility in common organic solvents. The polymer was amorphous and showed high PL quantum efficiency and high thermal stability with high Tg. The PL emission peaks were shown at 480–490 nm in solution and film, respectively, which may represent the bluest emission peak reported for fully conjugated PPV derivatives. The study of thermal annealing of PL spectrum showed excimer formation inhibited. The thermal and optoelectronic properties of the polymer imply that it is a promising material for the PLED application. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 900–907, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号