首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lucia Panizzi  Dietmar Hömberg  Antonio Fasano 《PAMM》2007,7(1):1150809-1150810
A mathematical model for the gas carburizing in steel is presented. Carbon is dissolved in the surface layer of a low-carbon steel part at a temperature sufficient to render the steel austenitic, followed by quenching to form a martensitic microstructure. We have a nonlinear evolution equation for the temperature, coupled with a nonlinear evolution equation for the carbon concentration, both coupled with two ordinary differential equations to describe the phase fractions. We present mathematical results concerning the well-posedness of the model and finally present a simulation of the process using a finite element approximation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A multivariant phase field model for martensitic transformations in elastoplastic materials is introduced which is in mathematical terms the regularization of a sharp interface approach. The evolution of microstructure is assumed to follow a time dependent Ginzburg-Landau equation. The coupled problem of the mechanical balance equation and the evolution equations is solved using finite elements and an implicit time integration scheme. In this work, plasticity is considered for the austenitic phase which influences the martensitic evolution. With aid of the model these interactions are studied in detail. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This work is motivated by cryogenic turning which allows end shape machining and simultaneously attaining a hardened surface due to deformation induced martensitic transformations. To study the process on the microscale, a multivariant phase field model for martensitic transformations in conjunction with a crystal plastic material model is introduced. The evolution of microstructure is assumed to follow a time-dependent Ginzburg-Landau equation. To solve the field equations the finite element method is used. Time integration is performed with Euler backward schemes, on the global level for the evolution equation of the phase field, and on the element level for the crystal plastic material law. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The martensitic transformation is described using a phase field model which is in mathematical terms the regularization of a sharp interface approach. In this work, up to two martensitic orientation variants are considered. The evolution of microstructure is assumed to follow a time dependent Ginzburg-Landau equation. The coupled problem of the mechanical balance equation and the evolution equations is solved using finite elements and an implicit time integration scheme. In this work, the global energy evolution during the martensitic transformation and the influence of external loads on the formation of the different martensitic phases are studied in 2d. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We consider the approximation of martensitic microstructure for a class of martensitic transformations. We model such microstructures by multi-well energy minimization problems with general homogeneous boundary data. Under our assumptions on such boundary data, the underlying microstructure can be nonunique. We first show that any energy-minimizing sequence converges strongly to a unique macroscopic deformation that is precisely the homogeneous deformation in the boundary condition. We then prove a series of estimates for the approximation of admissible deformations to the unique macroscopic deformation of the microstructure and for the closeness of the gradients of admissible deformations to the energy wells.  相似文献   

6.
Metallic materials often exhibit a complex microstructure with varying material properties in the different phases. Of major importance in mechanical engineering is the evolution of the austenitic and martensitic phases in steel. The martensitic transformation can be induced by heat treatment or by plastic surface deformation at low temperatures. A two dimensional elastic phase field model for martensitic transformations considering several martensitic orientation variants to simulate the phase change at the surface is introduced in [1]. However here, only one martensitic orientation variant is considered for the sake of simplicity. The separation potential is temperature dependent. Therefore, the coefficients of the Landau polynomial are identified by results of molecular dynamics (MD) simulations for pure iron [1]. The resulting separation potential is applied to analyse the mean interface velocity with respect to temperature and load. The interface velocity is computed by use of the dissipative part to the configurational forces balance as suggested in [3]. The model is implemented in the finite element code FEAP using standard 4-node elements with bi-linear shape functions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The macroscopic mechanical behavior of multi-phasic materials depends on the formation and evolution of their microstructure by means of phase transformation. In case of martensitic transformations, the resulting phase boundaries are sharp interfaces. We carry out a geometrically motivated discussion of the regularization of such sharp interfaces by use of an order parameter/phase-field and exploit the results for a regularized sharp interface model for two-phase elastic materials with evolving phase boundaries. To account for the dissipative effects during phase transition, we model the material as a generalized standard medium with energy storage and a dissipation function that determines the evolution of the regularized interface. Making use of the level-set equation, we are thereby able to directly translate prescribed sharp interface kinetic relations to the constitutive model in the regularized setting. We develop a suitable incremental variational three-field framework for the dissipative phase transformation problem. Finally, the modeling capability and the associated numerical solution techniques are demonstrated by means of a representative numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Simon Schmidt  Ralf Müller 《PAMM》2017,17(1):561-562
We study the martensitic transformation with a phase field model, where we consider the Bain transformation path in a small strain setting. For the order parameter, interpolating between an austenitic parent phase and martensitic phases, we use a Ginzburg-Landau evolution equation, assuming a constant mobility. In [1], a temperature dependent separation potential is introduced. We use this potential to extend the model in [2], by considering a transient temperature field, where the temperature is introduced as an additional degree of freedom. This leads to a coupling of both the evolution equation of the order parameter and the mechanical field equations (in terms of thermal expansion) with the heat equation. The model is implemented in FEAP as a 4-node element with bi-linear shape functions. Numerical examples are given to illustrate the influence of the temperature on the evolution of the martensitic phase. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
On a microscopic length scale dual-phase steels exhibit a polycrystalline microstructure consisting of ferrite and martensite. In this work it is assumed that the martensitic phase behaves purely thermoelastic while for the ferritic phase a thermoplastic material model was developed based on the assumption that the driving mechanism for persistent deformation is the movement of dislocations on preferred planes in preferred directions. The necessary shear stress to move dislocations at a certain temperature and deformation rate is assumed to possess contributions from the atomic lattice, alloying atoms and the dislocation structure. To consider the influence of the dislocation structure, dislocation densities are introduced as state variables for which temperature and deformation rate dependent evolution equations are formulated. Since for general loading histories the model equations cannot be integrated analytically, a time discretized form of the model equations with an appropriate solution algorithm is presented. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We analyze the stability of laminated microstructure for martensitic crystals that undergo cubic to trigonal, orthorhombic to triclinic, and trigonal to monoclinic transformations. We show that the microstructure is unique and stable for all laminates except when the lattice parameters satisfy certain identities.  相似文献   

11.
Based on the crystallography theory of martensitic transformation and Hill-Rice’s internal variable constitutive theory, a generalized micromechanics constitutive model is established to describe the thermoelastic martensitic transformation and reorientation of single crystal. This model can describe the macroscopic constitutive behavior due to the microstructure changes of forward transformation, reverse transformation and reorientation in single crystal under complex thermodynamic loading condition. The theoretical predictions agree well with the available experiment. Project supported by the National Natural Science Foundation of China and the State Education Commission of China. Due to the limit of space, for detailed derivation, please refer to Yan Wenyi, Micromechanics constitutive researches for transformable materials and transformation localization analysis,Ph.D. Thesis (in Chinese), Beijing: Tsinghua University, 1995.  相似文献   

12.
We study the time evolution of a generalized standard material in elastoplasticity. Of our particular interest are the formation and the evolution of microstructure. Our aim is to prove the existence of solutions. This is a challenging task, since the presence of microstructure comes along with a lack of convexity and, hence, compactness arguments cannot be applied to prove the existence of solutions. In order to overcome this problem, we will incorporate information on the microstructure into the internal variable, which is still compatible with the notion of generalized standard materials. More precisely, we shall allow such forms of microstructure that are given by simple laminates. We will consider a model for the evolution of these laminates and we will state a result on the existence of solutions to the time-incremental minimization problem. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The macroscopic mechanical behavior of many materials crucially depends on the formation and evolution of their microstructure. In this work, we consider the formation and evolution of laminate deformation microstructure in plasticity. Inspired by work on the variational modeling of phase transformation [5] and building on related work on multislip gradient crystal plasticity [9], we present a new finite strain model for the formation and evolution of laminate deformation microstructure in double slip gradient crystal plasticity. Basic ingredients of our model are a nonconvex hardening potential and two gradient terms accounting for geometrically necessary dislocations (GNDs) by use of the dislocation density tensor and regularizing the sharp interfaces between different kinematically coherent plastic slip states. The plastic evolution is described by means of a nonsmooth dissipation potential for which we propose a new regularization. We formulate a continuous gradient-extended rate-variational framework and discretize it in time to obtain an incremental-variational formulation. Discretization in space yields a finite element formulation which is used to demonstrate the capability of our model to predict the formation and evolution of laminate deformation microstructure in f.c.c. Copper with two active slip systems in the same slip plane. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The purpose of this work is the multiscale FE-FFT-based prediction of macroscopic material behavior, micromechanical fields and bulk microstructure evolution in polycrystalline materials subjected to macroscopic mechanical loading. The macroscopic boundary value problem (BVP) is solved using implicit finite element (FE) methods. In each macroscopic integration point, the microscopic BVP is embedded, the solution of which is found employing fast Fourier transform (FFT), fixed-point and Green's function methods. The mean material response is determined by the stress-strain relation at the micro scale or rather the volume average of the micromechanical fields. The evolution of the microstructure is modeled by means of non-conserved phase-fields. As an example, the proposed methodology is applied to the modeling of stress-induced martensitic phase transformations in metal alloys. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Shape memory alloys show the well known effect of pseudo-elasticity associated with the formation of two stress plateaus in the stress/strain diagram for tension tests. Due to cyclic loading, the stress plateaus decrease with every load cycle, particularly the upper one. This important effect of functional fatigue results from plastic deformations that are produced during solid-solid phase transformations between the austenitic and martensitic state. Outgoing from a polycrystalline approach for shape memory alloys we develop a micromechanical material model that is based on the Principle of the Minimum of the Dissipation Potential and predicts the evolution of plastic strains. Therefore, only a small number of material parameters is necessary and additionally, only a few assumptions are sufficient to model the effect of functional fatigue. We present yield functions as well as evolution equations for the volume fractions of austenite and martensite, and the plastic strains. Furthermore, we show an exemplary calculation for Nickel Titanium and compare it with experimental measurements to demonstrate the ability of our model. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
An analysis is given for a class of nonconforming Lagrange-type finite elements which have been successfully utilized to approximate the solution of a variational problem modeling the deformation of martensitic crystals with microstructure. These elements were first proposed and analyzed in 1992 by Rannacher and Turek for the Stokes equation. Our analysis highlights the features of these elements which make them effective for the computation of microstructure. New results for superconvergence and numerical quadrature are also given.

  相似文献   


17.
Shape memory alloys show a very complex material behavior associated with a diffusionless solid/solid phase transformation between austenite and martensite. Due to the resulting (thermo-)mechanical properties – namely the effect of pseudoelasticity and pseudoplasticity – they are very promising materials for the current and future technical developments. However, the martensitic phase transformation comes along with a simultaneous plastic deformation and thus, the effect of functional fatigue. We present a variational material model that simulates this effect based on the principle of the minimum of the dissipation potential. We use a combined Voigt/Reuss bound and a coupled dissipation potential to predict the microstructural developments in the polycrystalline material. We present the governing evolution equations for the internal variables and yield functions. In addition, we show some numerical results to prove our model's ability to predict the shape memory alloys' complex inner processes. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Patrick W. Dondl  Kaushik Bhattacharya 《PAMM》2007,7(1):1151207-1151208
In this article, we study the role of defects in the quasistatic evolution of a martensitic phase boundary. The formulation of the model gives rise to a nonlocal free boundary problem, for which we present an implicit finite-time discretization. For an approximate model, assuming a nearly flat interface, we show that the phase boundary exhibits a sick-slip behavior in the presence of a heterogeneous environment, thus leading to a transition from viscous kinetics to rate-independent behavior. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We study an initial boundary value problem of a model describing the evolution in time of diffusive phase interfaces in solid materials, in which martensitic phase transformations driven by configurational forces take place. The model was proposed earlier by the authors and consists of the partial differential equations of linear elasticity coupled to a nonlinear, degenerate parabolic equation of second order for an order parameter. In a previous paper global existence of weak solutions in one space dimension was proved under Dirichlet boundary conditions for the order parameter. Here we show that global solutions also exist for Neumann boundary conditions. Again, the method of proof is only valid in one space dimension.  相似文献   

20.
We are concerned with the bending problem of fibrous composite beams in which fibres are made of shape memory alloys. These are alloys that may undergo a stress‐induced martensitic phase transformation. The matrix is treated as an elastic medium, and perfect bonding between matrix and fibres is supposed. In our model, the beam is decomposed into layers and the hysteretic behaviour of the shape memory fibres is taken into account. The boundary value problem is formulated in the form of an evolution variational inequality which, after finite element discretization, can be solved incrementally as a sequence of linear complementarity problems. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号