首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Y. Theiner  G. Hofstetter 《PAMM》2008,8(1):10347-10348
In this contribution the combination of a smeared rotating crack model with a crack model based on the strong discontinuity approach and formulated within the framework of elements with embedded discontinuities is presented. This so–called crack model with delayed embedded discontinuities allows considering crack opening in the direction normal to the crack and relative tangential displacements of the crack faces with transfer of shear forces across the crack faces. The advantages of this approach are shown by the numerical simulation of an anchor pull out test. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The numerical modeling of failure mechanisms due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by recently developed diffusive crack modeling concepts, which are based on the introduction of a crack phase field. Such an approach is conceptually in line with gradient-extended continuum damage models which include internal length scales. In this paper, we extend our recently outlined mechanical framework [1–3] towards the phase field modeling of fracture in the coupled problem of fluid transport in deforming porous media. Here, extremely complex crack patterns may occur due to drying or hydraulic induced fracture, the so called fracking. We develop new variational potentials for Biot-type fluid transport in porous media at finite deformations coupled with phase field fracture. It is shown, that this complex coupled multi-field problem is related to an intrinsic mixed variational principle for the evolution problem. This principle determines the rates of deformation, fracture phase field and fluid content along with the fluid potential. We develop a robust computational implementation of the coupled problem based on the potentials mentioned above and demonstrate its performance by the numerical simulation of complex fracture patterns. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Radan Radulovic  Jörn Mosler 《PAMM》2010,10(1):131-132
A finite element formulation within the framework of the Strong Discontinuity Approach suitable for the simulation of crack growth is presented. The formulation allows for intersecting discontinuities and similarly to classical interface elements, the cracks are introduced parallel to the element facets. However and in contrast to interface elements, the discontinuities are directly embedded in finite elements, based on the Enhanced Assumed Strain concept. It is shown that a realistic prediction of the mechanical response requires the consideration of more than one crack within each finite element. The proposed formulation is suitable to overcome locking effects and it automatically fulfills crack path continuity. The approach is strictly local yielding an efficient numerical formulation. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The paper performs a comparative study of variational-based brittle fracture with its gradient-type regularization, and outlines aspects of the numerical implementations of both approaches. The latter smoothes out sharp displacement discontinuities of cracks. On the side of discrete crack modeling, we propose a variational framework of configurational-force-driven crack propagation. The latter provides the basis for the computation of material nodal forces and drives the crack propagation in our proposed finite element framework with adaptive nodal doubling. Such a formulation is of limited applicability for the modeling of crack inititation in homogeneous bodies without defects and in situations with complex crack branching. This can be overcome by a regularized crack modeling. Here, an elliptic approximation of the crack surface term yields a regularized two field functional, where an additional scalar field approximates the set of discontinuities. We provide a simple interpretation of such a transition from the sharp crack to the regularized setting. It results in a smooth continuum-damage-type theory with a specific gradient-damage and hardening terms, depending on a length scale that represents the width of a zone that surrounds the crack. Such a variational framework is implemented by a coupled two-field finite element framework in a staightforward manner. We compare representative numerical results obtained by both methods for selected crack patterns and highlight the pro and contra of both meshes. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This work presents a time-domain hypersingular integral equation (TD-HIE) method for modeling 3D crack growth in electro-magneto-thermo-elastic coupled viscoplastic multiphase composites (EMTE-CVP-MCs) under extended incremental loads rate through intricate theoretical analysis and numerical simulations. Using Green’s functions, the extended general incremental displacement rate solutions are obtained by time-domain boundary element method. Three-dimensional arbitrary crack growth problem in EMTE-CVP-MCs is reduced to solving a set of TD-HIEs coupled with boundary integral equations, in which the unknown functions are the extended incremental displacement discontinuities gradient. Then, the behavior of the extended incremental displacement discontinuities gradient around the crack front terminating at the interface is analyzed by the time-domain main-part analysis method of TD-HIE. Also, analytical solutions of the extended singular incremental stresses gradient and extended incremental integral near the crack fronts in EMTE-CVP-MCs are provided. In addition, a numerical method of the TD-HIE for a 3D crack subjected to extended incremental loads rate is put forward with the extended incremental displacement discontinuities gradient approximated by the product of time-domain basic density functions and polynomials. Finally, examples are presented to demonstrate the application of the proposed method.  相似文献   

6.
The modeling of failure in ductile metals must account for complex phenomena at a micro-scale as well as the final rupture at the macro-scale. Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model with a concept for the modeling of macroscopic crack discontinuities. In this context, it is important to account for material length scales and thermo-mechanical coupling effects due to dissipative heating. This can be achieved by the construction of non-standard, gradient-enhanced models of plasticity with a full embedding into continuum thermodynamics [1,2]. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture based on regularized crack discontinuities. This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns within a pure continuum formulation. Moreover, the phase field modeling of fracture is related to gradient theories of continuum damage mechanics, and fits nicely the structure of constitutive models for gradient plasticity. The main focus of this work is the extensions to gradient thermoplasticity and phase field formulation of ductile fracture, conceptually in line with the work [3]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Discontinuous enrichment in finite elements with a partition of unity method   总被引:14,自引:0,他引:14  
A technique is presented to model arbitrary discontinuities in the finite element framework by locally enriching a displacement-based approximation through a partition of unity method. This technique allows discontinuities to be represented independently of element boundaries. The method is applied to fracture mechanics, in which crack discontinuities are represented using both a jump function and the asymptotic near-tip fields. As specific examples, we consider cracks and crack growth in two-dimensional elasticity and Mindlin–Reissner plates. A domain form of the J-integral is also derived to extract the moment intensity factors. The accuracy and utility of the method is also discussed.  相似文献   

8.
The extended displacement discontinuity (EDD) boundary element method is developed to analyze an arbitrarily shaped planar crack in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack face. Green's functions for uniformly distributed EDDs over triangular and rectangular elements for 2D hexagonal QCs are derived. Employing the proposed EDD boundary element method, a rectangular crack is analyzed to verify the Green's functions by discretizing the crack with rectangular and triangular elements. Furthermore, the elliptical crack problem for 2D hexagonal QCs is investigated. Normal, tangential, and thermal loads are applied on the crack face, and the numerical results are presented graphically.  相似文献   

9.
An extended displacement discontinuity (EDD) boundary integral equation method is proposed for analysis of arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack surface. Green's functions for unit point EDDs in an infinite three-dimensional medium of 2D hexagonal QC are derived using the Hankel transform method. Based on the Green's functions and the superposition theorem, the EDD boundary integral equations for an arbitrarily shaped planar crack in an infinite 2D hexagonal QC body are established. Using the EDD boundary integral equation method, the asymptotic behavior along the crack front is studied and the classical singular index of 1/2 is obtained at the crack edge. The extended stress intensity factors are expressed in terms of the EDDs across crack surfaces. Finally, the energy release rate is obtained using the definitions of the stress intensity factors.  相似文献   

10.
Using the fundamental solution of interface crack and the method of finite-part integral, the problem of three-dimensional interface crack is reduced to solve a set of two-dimensional hypersingular integrodifferential equations with unknown displacement discontinuities of crack surface. Then a systematically theoretical analysis for solving these equations is presented.  相似文献   

11.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities exhibits drawbacks in situations with complex crack topologies. This drawback is overcome by diffusive crack modeling based on the introduction of a fracture phase field characterizing via an auxiliary variable the crack topology. In the following we extend recent advances in phase-field-type fracture based on operator split techniques, suggested in Miehe et al. [1], to the modeling of crack propagation in geometrically large deforming solids e.g. rubber-like materials. An extremely robust algorithmic treatment based on an operator split scheme is introduced consisting of three steps. Updating i) a local history-field containing the maximum reference energy, ii) the fracture phase field, and iii) the displacement field. We demonstrate the performance of proposed phase field formulation for largely deforming solids by means of a representative numerical example. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The numerical modeling of dynamic failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies and demands the formulation of additional branching criteria. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. We focus on the extension of a recently developed phase field model for fracture from the quasi-static setting towards the dynamic setting. It is obtained by taking into account inertial terms and associated dynamic integrators. The introduction of a history field, containing a maximum fracture-driving energy, provides a very transparent representation of the balance equation that governs the diffusive crack topology. In particular, it allows for the construction of an extremely robust operator split technique. In a subsequent step, the proposed model is extended to three dimensional problems. The dynamic treatment opens the door to the analysis of complex fracture phenomena like multiple crack branching and crack arrest. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The authors experimentally investigate the discontinuous ("jumping") character of the development of laser cracks in polymethyl methacrylate. The discontinuities arise in such an order that the crack remains rounded, even if the laser beam is rectangular in cross section. The authors estimate the pressure drop in the crack during a "jump."Institute of Problems in Mechanics, Academy of Sciences of the USSR, Moscow. Translated from Mekhanika Polimerov, Vol. 9, No. 3, pp. 475–481, May–June, 1973.  相似文献   

14.
The numerical modeling of failure mechanisms in plates and shells due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. In this paper, we extend ideas recently outlined in [1, 2] towards the phase field modeling of fracture in dimension-reduced continua with application to Kirchhoff plates and shells. The introduction of history fields, containing the maximum reference energy obtained in history, provides a very transparent representation of the coupled balance equations and allows the construction of an extremely robust operator split technique. The performance of the proposed models is demonstrated by means of representative numerical examples. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
三维横观各向同性介质界面裂纹的边界积分方程方法   总被引:2,自引:0,他引:2  
基于两相三维横观各向同性介质的基本解和Somigliana恒等式,对三维横观各向同性介质中的任意形状的平片界面裂纹,以裂纹面上的不连续位移为待求参量建立了超奇异积分_微分方程,界面平行于横观各向同性面.根据发散积分的有限部积分理论,应用积分方程方法研究得到裂纹前沿的位移和应力场的表达式、奇性指数以及应力强度因子的不连续位移表达式.在非震荡情形下,超奇异积分_微分方程退化为超奇异积分方程,与均匀介质的超奇异积分方程形式完全相同.  相似文献   

16.
17.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in dynamic problems with complex crack topologies. This can be overcome by a diffusive crack modeling based on the introduction of a crack phase field. We outline a conceptual framework for phase field models of crack propagation in brittle elastic and ductile elastic-plastic solids under dynamic loading and investigate the ductile to brittle failure mode transition observed in the experiment performed by Kalthoff and Winkeler [3]. We develop incremental variational principles and consider their numerical implementations by multi-field finite element methods. To this end, we define energy storage and dissipation functions for the plastic flow including the fracture phase field. The introduction of local history fields that drive the evolution of the crack phase field inspires the construction of robust operator split schemes. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The displacement discontinuity method is extended to study the fracture behavior of interface cracks in one-dimensional hexagonal quasicrystal coating subjected to anti-plane loading. The Fredholm integral equation of the first kind is established in terms of displacement discontinuities. The fundamental solution for anti-plane displacement discontinuity is derived by the Fourier transform method. The singularity of stress near the crack front is analyzed, and Chebyshev polynomials of the second kind are numerically adopted to solve the integral equations. The displacement discontinuities across crack faces, the stress intensity factors, and the energy release rate are calculated from the coefficients of Chebyshev polynomials. In combination with numerical simulations, a comprehensive study of influencing factors on the fracture behavior is conducted.  相似文献   

20.
Most metals fail in a ductile fashion, i.e, fracture is preceded by significant plastic deformation. The modeling of failure in ductile metals must account for complex phenomena at micro-scale, such as nucleation, growth and coalescence of micro-voids. In this work, we start with von-Mises plasticity model without considering void generation. The modeling of macroscopic cracks can be achieved in a convenient way by the continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities [1]. This avoids the use of complex discretization methods for crack discontinuities and can account for complex crack patterns. The key aspect of this work is the extension of the energetic and the stress-based phase field driving force function in brittle fracture to account for a coupled elasto-plastic response in line with our recent work [3]. We develop a new theoretical and computational framework for the phase field modeling of ductile fracture in elastic-plastic solids. To account for large strains, the constitutive model is constructed in the logarithmic strain space, which simplify the model equations and results in a formulation similar to small strains. We demonstrate the modeling capabilities and algorithmic performance of the proposed formulation by representative simulations of ductile failure mechanisms in metals. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号