首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a numerical approach for analyzing interacting multiple cracks in infinite linear elastic media is presented. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks, the original problem is divided into a homogeneous problem (the one without cracks) subjected to remote loads and a multiple crack problem in an unloaded body with applied tractions on the crack surfaces. Thus, the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements proposed recently by the author. Test examples are given to illustrate that the numerical approach is very accurate for analyzing interacting multiple cracks in an infinite linear elastic media under remote uniform stresses. In addition, the displacement discontinuity method with crack-tip elements is used to analyze a multiple crack problem in a finite plate. It is found that the boundary element method is also very accurate for investigating interacting multiple cracks in a finite plate. Specially, a generalization of Bueckner’s principle and the displacement discontinuity method with crack-tip elements are used to analyze multiple circular arc crack problems in infinite plate in tension (including: Two Collinear Circular Arc Cracks, Three Collinear Circular Arc Cracks, Two Parallel Circular Arc Cracks, Three Parallel Circular Arc Cracks and Two Circular Arc Cracks) in a plane elasticity plate. Many results are given.  相似文献   

2.
Masaru Ikehata  Hiromichi Itou 《PAMM》2007,7(1):1090805-1090806
In solid mechanics, nondestructive testing has been an important technique in gathering information about unknown cracks, or defects in material. From a mathematical point of view, this is described as an inverse problem of partial differential equations, that is, the problem is to extract information about the location and shape of an unknown crack from the surface displacement field and traction on the boundary of the elastic material. By using the enclosure method introduced by Prof. Ikehata we can derive the extraction formula of an unknown linear crack from a single set of measured boundary data. Then, we need to have precise properties of a solution of the corresponding boundary value problem; for instance, an expansion formula around the crack tip. In this paper we consider the inverse problem concentrating on this point. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Previous studies on the sensitivity of cracks in ice shelves with different boundary conditions, stress states and density profiles revealed the need for further analyses. As the transfer of boundary conditions from dynamic ice flow simulations to the linear elastic fracture analyses proved to be a critical point in previous studies, a new approach to relate viscous and elastic material behaviour is proposed. The numerical simulations are conducted using Finite Elements utilizing the concept of configurational forces. To show the applicability of the approach, a 2-dimensional plane stress geometry with volume loads due to the ice shelf flow is analyzed. The resulting crack path is compared to available crack paths from satellite images. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This paper presents a numerical approach for modeling multiple crack fatigue growth in a plane elastic infinite plate. It involves a generation of Bueckner’s principle, a displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author and an extension of Paris’ law to a multiple crack problem under mixed-mode loading. Because of an intrinsic feature of the boundary element method, a general multiple crack growth problem can be solved in a single-region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is conveniently modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. Fatigue growth modeling of an inclined crack in an infinite plate under biaxial cyclic loads is taken into account to illustrate the effectiveness of the present numerical approach. As an example, the present numerical approach is used to study the fatigue growth of three parallel cracks with same length under uniaxial cyclic load. Many numerical results are given.  相似文献   

5.
The stress field due to the presence of a Volterra dislocation in an isotropic elastic sheet is obtained. The stress components exhibit the familiar Cauchy type singularity at dislocation location. The solution is utilized to construct integral equations for elastic sheets weakened by multiple embedded or edge cracks. The cracks are perpendicular to the sheet boundary and applied traction is such that crack closing may not occur. The integral equations are solved numerically and stress intensity factors (SIFs) are determined on a crack edges.  相似文献   

6.
椭圆孔边裂纹对SH波的散射及其动应力强度因子   总被引:2,自引:0,他引:2  
采用复变函数和Green函数方法求解具有任意有限长度的椭圆孔边上的径向裂纹对SH波的散射和裂纹尖端处的动应力强度因子.取含有半椭圆缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时的位移解作为Green函数,采用裂纹“切割”方法,并根据连续条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.讨论了孔洞的存在对动应力强度因子的影响.  相似文献   

7.
Sascha Hell  Wilfried Becker 《PAMM》2014,14(1):157-158
Three-dimensional crack configurations in composite laminates are studied by means of the Scaled Boundary Finite Element Method (SBFEM) particularly regarding stress singularities and their associated deformation modes. The SBFEM is an efficient semi-analytical method that permits solving linear elastic mechanical problems. Only the boundary needs to be discretized while the problem is considered analytically in the direction of the dimensionless radial coordinate pointing from the scaling center to the boundary . An important advantage is that it requires no additional effort for the characterization of existing stress singularities. The situation of two meeting inter-fiber cracks is investigated in detail, considering different materials and fiber / crack orientations. It is shown that in three-dimensional crack configurations in composite laminates so-called hypersingularities can occur, i.e. stress singularities which are even stronger than the classical crack singularity. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
含曲线裂纹圆柱扭转问题的新边界元法   总被引:4,自引:0,他引:4  
研究含曲线裂纹圆柱的Saint-Venant扭转,将问题化归为裂纹上边界积分方程的求解.利用裂纹尖端的奇异元和线性元插值模型,给出了扭转刚度和应力强度因子的边界元计算公式.对圆弧裂纹、曲折裂纹以及直线裂纹的典型问题进行了数值计算,并与用Gauss-Chebyshev求积法计算的直裂纹情形结果进行了比较,证明了方法的有效性和正确性.  相似文献   

9.
The plane contact problem of a stamp impressed into an elastic half-plane containing arbitrarily arranged rectilinear subsurface cracks is formulated and investigated by asymptotic methods. Partial or total overlapping of the crack edges is assumed. The problem reduces to a system of linear singular integrodifferential equations with side conditions in the form of equalities and inequalities. An analytic solution of the problem is obtained in the form of asymptotic power series /1/ in the relative dimension of the greatest crack. Dependences of the first terms of the asymptotic expansions of the desired functions on the mutual location of the cracks and the contact domains, the pressure and friction stress distributions, and the crack size and orientation are determined. Numerical results are presented.

Analysis of the influence of the stress-free boundary of the half-plane on the state of stress and strain of the elastic material near the cracks is presented in /2, 3/. The problem of a crack in an elastic plane whose edges overlap partially is also examined in /3/ by numerical methods.  相似文献   


10.
Service life of cyclically loaded components is often determined by the propagation of short fatigue cracks, which is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of such stage I-cracks is presented. The crack is discretised by dislocation discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Ch. Zhang  A. Savaidis 《PAMM》2002,1(1):205-206
Analysis of elastic wave propagation in anisotropic solids with cracks is of particular interest to quantitative non‐destructive testing and fracture mechanics. For this purpose, a novel time‐domain boundary integral equation method (BIEM) is presented in this paper. A finite crack in an unbounded elastic solid of general anisotropy subjected to transient elastic wave loading is considered. Two‐dimensional plane strain or plane stress condition is assumed. The initial‐boundary value problem is formulated as a set of hypersingular time‐domain traction boundary integral equations (BIEs) with the crack‐opening‐displacements (CODs) as unknown quantities. A time‐stepping scheme is developed for solving the hypersingular time‐domain BIEs. The scheme uses the convolution quadrature formula of Lubich [1] for temporal convolution and a Galerkin method for spatial discretization of the BIEs. An important feature of the present time‐domain BIEM is that it uses the Laplace‐domain instead of the more complicated time‐domain Green's functions. Fourier integral representations of Laplace‐domain Green's functions are applied. No special technique is needed in the present time‐domain BIEM for evaluating hypersingular integrals.  相似文献   

12.
提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.  相似文献   

13.
Existing procedures which are available for the determinationof the path traversed by a crack growing in a two-dimensionallinear elastic body are limited to simple geometric configurationswhere the growth of all the crack tips is the same. In thispaper, an important advance has been made; a crack may intersectother cracks, while a crack growing from a boundary may intersectother boundaries. Simulations of crack growth and intersectionsare performed for a number of configurations and computationalprocedures are given which control the rate of crack growth.In order to assess the robustness of these new extensions, cracksat or near circular holes and multiple cracks growing into anedge crack are considered, and detailed results given.  相似文献   

14.
This paper deals with the multiple inclined or circular arc cracks in the upper half of bonded dissimilar materials subjected to shear stress. Using the complex variable function method, and with the help of the continuity conditions of the traction and displacement, the problem is formulated into the hypersingular integral equation (HSIE) with the crack opening displacement function as the unknown and the tractions along the crack as the right term. The obtained HSIE are solved numerically by utilising the appropriate quadrature formulas. Numerical results for multiple inclined or circular arc cracks problems in the upper half of bonded dissimilar materials are presented. It is found that the nondimensional stress intensity factors at the crack tips strongly depends on the elastic constants ratio, crack geometries, the distance between each crack and the distance between the crack and boundary.  相似文献   

15.
A method is proposed for determining the two-dimensional stressed state of a half space with a general rectilinear anisotropy. General representations of the complex potentials are obtained and studied, as well as expressions for the stresses and displacements, along with the boundary conditions for determining these functions. As an example, we solve for the stressed state of and calculate the stress intensity factors for a half plane (in the presence of a single elastic symmetry plane) with a circular (elliptical) hole and edge cracks. It is shown how the crack length, the closeness of a hole with a crack to the boundary, and the anisotropy of the material affect the stress concentration and stress intensity factors.  相似文献   

16.
The present work is devoted to the solution of the three-dimensional fracture mechanics problem for a linear elastic, homogeneous and isotropic solid with a stationary plane crack under normal time-harmonic loading. The problem has been solved by the method of boundary integral equations with the allowance for the contact interaction of the opposite faces of the crack. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A boundary value problem describing the equilibrium of a two-dimensional linear elastic body with a thin rectilinear elastic inclusion and possible delamination is considered. The stress and strain state of the inclusion is described using the equations of the Euler–Bernoulli beam theory. Delamination means the existence of a crack between the inclusion and the elastic matrix. Nonlinear boundary conditions preventing crack face interpenetration are imposed on the crack faces. As a result, problem with an unknown contact domain is obtained. The problem is solved numerically by applying an iterative algorithm based on the domain decomposition method and an Uzawa-type algorithm for solving variational inequalities. Numerical results illustrating the efficiency of the proposed algorithm are presented.  相似文献   

18.
A method is proposed for studying the two-dimensional stressed state of a multiply connected anisotropic body with cavities and elastic and rigid inclusions, as well as planar cracks and rigid laminar inclusions. Generalized complex potentials, conformal mapping, and the method of least squares are used. The problem is reduced to solving a system of linear algebraic equations. Formulas are given for finding the stress intensity factors in the case of cracks and laminar inclusions. For an anisotropic plate with a single elliptical hole or a crack and an elastic (rigid) inclusion, some numerical results are presented from a study of the effect of the rigidity of the inclusion and the closeness of the contours to one another on the distribution of stresses and the stress intensity factor. Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 30, pp. 175–187, 1999.  相似文献   

19.
The general formulation of the transient elastodynamic second boundary value problem in an isotropic linear elastic body with a crack of arbitrary shape by combining the boundary integral equation method and the Laplace transform with respect to time is presented in this paper. Both finite and infinite elastic bodies are considered. A numerical solution of the transformed boundary integral equations is proposed.  相似文献   

20.
Paul Judt  Andreas Ricoeur 《PAMM》2012,12(1):159-160
This work presents numerical methods used for predicting crack paths in technical structures based on the theory of linear elastic fracture mechanics. The FE-method is used in combination with an efficient remeshing algorithm and a post processor to calculate crack tip loading. The interaction of cracks and internal boundaries and interfaces is investigated. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号