首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Kuhn  R. Müller 《PAMM》2008,8(1):10223-10224
The variational formulation of brittle fracture as formulated for example by Francfort and Marigo in [1], where the total energy is minimized with respect to any admissible crack set and displacement field, allows the identification of crack paths, branching of preexisting cracks and even crack initiation without additional criteria. For its numerical treatment a continuous approximation of the model in the sense of Γ-convergence has been presented by Bourdin in [2]. In the regularized Francfort–Marigo model cracks are represented by an additional field variable (secondary variable) s∈[0,1] which is 0 if the material is cracked and 1 if it is undamaged. In this work, we reinterpret the crack variable as a phase field order parameter and address cracking as a phase transition problem. The crack growth is governed by the evolution equation of the order parameter which resembles the Ginzburg–Landau equation. The numerical treatment is done by finite elements combined with an implicit Euler scheme for the time integration. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In phase field fracture models cracks are indicated by the value of a scalar field variable which interpolates smoothly between broken and undamaged material. The evolution equation for this crack field is coupled to the mechanical field equations in order to model the mutual interaction between the crack evolution and mechanical quantities. In finite element simulations of crack growth at comparatively slow loading velocities, a quasi-static phase field model yields reasonable results. However, the simulation of fast loading or the nucleation of new cracks challenges the limits of such a formulation. Here, the quasi-static phase field model predicts brutal crack extension with an artificially high crack speed. In this work, we analyze to which extend a dynamic formulation of the mechanical part of the phase field model can overcome this paradox created by the quasi-static formulation. In finite element simulations, the impact of the dynamic effects is studied, and differences between the crack propagation behavior of the quasi-static model and the dynamic formulation are highlighted. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
Charlotte Kuhn  Ralf Müller 《PAMM》2009,9(1):191-192
In Francfort and Marigo's variational free-discontinuity formulation of brittle fracture [1] cracking is regarded as an energy minimization process, where the total energy is minimized with respect to any admissible crack set and displacement field. No additional criterion is needed to determine crack paths, branching of cracks and crack initiations. However, a direct discretization of the model is faced with significant technical problems, as it involves minimizations in a set of possibly discontinuous functions. A regularized version of the model has been introduced by Bourdin [2] and based on this, we use the concept of a continuum phase field model to simulate cracking processes. Cracks are indicated by the order parameter of the phase field model and cracking can be regarded as a phase transition problem. Additionally, introducing the heat equation into the model, it is capable to also take account of crack propagation due to thermal stresses. In the numerical implementation, crack parameter as well as temperature are treated as additional degrees of freedom and the coupled field equations are solved using the finite element method together with an implicit time integration scheme. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This work outlines a variational-based framework for the phase field modeling of ductile fracture in elastic-plastic solids at large strains. The phase field approach regularizes sharp crack discontinuities within a pure continuum setting by a specific gradient damage model with geometric features rooted in fracture mechanics. Based on the recent works [1, 2], the phase field model of ductile fracture is linked to a formulation of gradient plasticity at finite strains in order to ensure the crack to evolve inside the plastic zones. The thermodynamic formulation is based on the definition of a constitutive work density function including the stored elastic energy and the dissipated work due to plasticity and fracture. The proposed canonical theory is shown to be governed by a rate-type minimization principle, which determines the coupled multi-field evolution problem. Another aspect is the regularization towards a micromorphic gradient plasticity-damage setting which enhances the robustness of the finite element formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The phase field modeling of brittle fracture was a topic of intense research in the last few years and is now well-established. We refer to the work [1-3], where a thermodynamically consistent framework was developed. The main advantage is that the phase-field-type diffusive crack approach is a smooth continuum formulation which avoids the modeling of discontinuities and can be implemented in a straightforward manner by multi-field finite element methods. Therefore complex crack patterns including branching can be resolved easily. In this paper, we extend the recently outlined phase field model of brittle crack propagation [1-3] towards the analysis of ductile fracture in elastic-plastic solids. In particular, we propose a formulation that is able to predict the brittle-to-ductile failure mode transition under dynamic loading that was first observed in experiments by Kalthoff and Winkler [4]. To this end, we outline a new thermodynamically consistent framework for phase field models of crack propagation in ductile elastic-plastic solids under dynamic loading, develop an incremental variational principle and consider its robust numerical implementation by a multi-field finite element method. The performance of the proposed phase field formulation of fracture is demonstrated by means of the numerical simulation of the classical Kalthoff-Winkler experiment that shows the dynamic failure mode transition. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A variational-asymptotic model of the Griffith criterion for the development of a crack is constructed for a complex stress-strain state. It is assumed that the shear loads are much smaller than the breaking loads but the longitudinal loading of the crack is taken into account. Using asymptotic analysis, the problem of finding the minimum of the total energy of a body with a crack reduces to a sequence of algebraic equations, the solutions of which determine the form of the branch of the crack and its length as a function of a time-like dimensionless parameter. The absence of solutions is treated as a conversion of the fracture process to a dynamic stage and the impossibility of a quasistatic formulation of the problem. In particular, the application of shear and longitudinal loads just leads to an avalanche-type growth of the crack.  相似文献   

8.
The numerical modeling of failure mechanisms due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by recently developed diffusive crack modeling concepts, which are based on the introduction of a crack phase field. Such an approach is conceptually in line with gradient-extended continuum damage models which include internal length scales. In this paper, we extend our recently outlined mechanical framework [1–3] towards the phase field modeling of fracture in the coupled problem of fluid transport in deforming porous media. Here, extremely complex crack patterns may occur due to drying or hydraulic induced fracture, the so called fracking. We develop new variational potentials for Biot-type fluid transport in porous media at finite deformations coupled with phase field fracture. It is shown, that this complex coupled multi-field problem is related to an intrinsic mixed variational principle for the evolution problem. This principle determines the rates of deformation, fracture phase field and fluid content along with the fluid potential. We develop a robust computational implementation of the coupled problem based on the potentials mentioned above and demonstrate its performance by the numerical simulation of complex fracture patterns. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Hydraulically driven fracture has gained more and more research activity in the last few years, especially due to the growing interest of the petroleum industry. Key challenge for a powerful simulation of this scenario is an effective modeling and numerical implementation of the behavior of the solid skeleton and the fluid phase, the mechanical coupling between the two phases as well as the incorporation of the fracture process. Existing models for hydraulic fracturing can be found for example in [1], where the crack path is predetermined, or in [2] who use a phase field fracture model in an elastic framework, however without incorporating the fluid flow. In this work we propose a new compact model structure for the Biot-type fluid transport in porous media at finite strains based on only two constitutive functions, that is the free energy function ψ and a dissipation potential ϕ that includes the incorporation of an additional Poiseuille-type fluid flow in cracks. This formulation is coupled to a phase field approach for fracture and is fully variational in nature, as shown in [3]. In contrast to formulations with a sharp-crack discontinuity, the proposed regularized approach has the main advantage of a straight-forward modeling of complex crack patterns including branching. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A multivariant phase field model for martensitic transformations in elastoplastic materials is introduced which is in mathematical terms the regularization of a sharp interface approach. The evolution of microstructure is assumed to follow a time dependent Ginzburg-Landau equation. The coupled problem of the mechanical balance equation and the evolution equations is solved using finite elements and an implicit time integration scheme. In this work, plasticity is considered for the austenitic phase which influences the martensitic evolution. With aid of the model these interactions are studied in detail. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Most metals fail in a ductile fashion, i.e, fracture is preceded by significant plastic deformation. The modeling of failure in ductile metals must account for complex phenomena at micro-scale, such as nucleation, growth and coalescence of micro-voids. In this work, we start with von-Mises plasticity model without considering void generation. The modeling of macroscopic cracks can be achieved in a convenient way by the continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities [1]. This avoids the use of complex discretization methods for crack discontinuities and can account for complex crack patterns. The key aspect of this work is the extension of the energetic and the stress-based phase field driving force function in brittle fracture to account for a coupled elasto-plastic response in line with our recent work [3]. We develop a new theoretical and computational framework for the phase field modeling of ductile fracture in elastic-plastic solids. To account for large strains, the constitutive model is constructed in the logarithmic strain space, which simplify the model equations and results in a formulation similar to small strains. We demonstrate the modeling capabilities and algorithmic performance of the proposed formulation by representative simulations of ductile failure mechanisms in metals. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The modeling of failure in ductile metals must account for complex phenomena at a micro-scale as well as the final rupture at the macro-scale. Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model with a concept for the modeling of macroscopic crack discontinuities. In this context, it is important to account for material length scales and thermo-mechanical coupling effects due to dissipative heating. This can be achieved by the construction of non-standard, gradient-enhanced models of plasticity with a full embedding into continuum thermodynamics [1,2]. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture based on regularized crack discontinuities. This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns within a pure continuum formulation. Moreover, the phase field modeling of fracture is related to gradient theories of continuum damage mechanics, and fits nicely the structure of constitutive models for gradient plasticity. The main focus of this work is the extensions to gradient thermoplasticity and phase field formulation of ductile fracture, conceptually in line with the work [3]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The numerical assessment of fracture has gained importance in fields like the safety analysis of technical structures or the hydraulic fracturing process. The modelling technique discussed in this work is the phase field method which introduces an additional scalar field. The smooth phase field distinguishes broken from undamaged material and thus describes cracks in a continuum. The model consists of two coupled partial differential equations - the equation of motion including the constitutive behaviour of the material and a phase field evolution equation. The crack growth follows implicitly from the solution of this system of PDEs. The numerical solution with finite elements can be accelerated with an algorithm that performs computationally extensive tasks on a graphic processing unit (GPU). A numerical example illustrates the capability of the model to reproduce realistic features of dynamic brittle fracture. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The numerical modeling of dynamic failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies and demands the formulation of additional branching criteria. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. We focus on the extension of a recently developed phase field model for fracture from the quasi-static setting towards the dynamic setting. It is obtained by taking into account inertial terms and associated dynamic integrators. The introduction of a history field, containing a maximum fracture-driving energy, provides a very transparent representation of the balance equation that governs the diffusive crack topology. In particular, it allows for the construction of an extremely robust operator split technique. In a subsequent step, the proposed model is extended to three dimensional problems. The dynamic treatment opens the door to the analysis of complex fracture phenomena like multiple crack branching and crack arrest. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca’s law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model. Moreover, the proof is based on arguments of evolution equations and on the Banach fixedpoint theorem.  相似文献   

17.
The martensitic transformation is described using a phase field model which is in mathematical terms the regularization of a sharp interface approach. In this work, up to two martensitic orientation variants are considered. The evolution of microstructure is assumed to follow a time dependent Ginzburg-Landau equation. The coupled problem of the mechanical balance equation and the evolution equations is solved using finite elements and an implicit time integration scheme. In this work, the global energy evolution during the martensitic transformation and the influence of external loads on the formation of the different martensitic phases are studied in 2d. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in dynamic problems with complex crack topologies. This can be overcome by a diffusive crack modeling based on the introduction of a crack phase field. We outline a conceptual framework for phase field models of crack propagation in brittle elastic and ductile elastic-plastic solids under dynamic loading and investigate the ductile to brittle failure mode transition observed in the experiment performed by Kalthoff and Winkeler [3]. We develop incremental variational principles and consider their numerical implementations by multi-field finite element methods. To this end, we define energy storage and dissipation functions for the plastic flow including the fracture phase field. The introduction of local history fields that drive the evolution of the crack phase field inspires the construction of robust operator split schemes. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In recent years, increasing interest in so-called smart materials such as ferroelectric polymers and ceramics has been shown. Those materials are used in various actuators, sensors, and also in medical devices. In this paper, we outline a micro-macro approach to the modeling of macroscopic hystereses which directly takes into account the microstructural evolution of electrically poled domains. To this end, an incremental variational formulation for a gradient-type phase field model is developed and exploited for the simulation of electromechanically coupled problems. The formulation determines the hysteretic response of the material in terms of an energy-enthalpy and a dissipation function which both depend on the microscopic remanent polarization treated as an order parameter. The gradient-type balance law for the phase field can be considered as a generalization of Biot's equation for standard dissipative materials and may be related to the classical Ginzburg-Landau equation. Furthermore, the variational formulation serves as natural starting point for a compact and symmetric finite element implementation of the coupled micromechanical problem covering the displacement, the electric potential, and the microscopic polarization vector. For this three-field scenario we develop a variational-based homogenization method which determines the overall macroscopic hysteretic properties of a polycrystalline aggregate. The proposed computational method can be used as a numerical laboratory for the improvement of microstructural properties. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号