首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove a completeness theorem for K, the infinitary extension of the graded version K0 of the minimal normal logic K, allowing conjunctions and disjunctions of countable sets of formulas. This goal is achieved using both the usual tools of the normal logics with graded modalities and the machinery of the predicate infinitary logics in a version adapted to modal logic.  相似文献   

2.
We set up a generic framework for proving completeness results for variants of the modal mu-calculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus.Besides these main applications, our result covers the Kozen–Walukiewicz completeness theorem for the standard modal mu-calculus, as well as the linear-time mu-calculus and modal fixpoint logics on ranked trees. Completeness of the linear-time mu-calculus is known, but the proof we obtain here is different and places the result under a common roof with Walukiewicz' result.Our approach combines insights from the theory of automata operating on potentially infinite objects, with methods from the categorical framework of coalgebra as a general theory of state-based evolving systems. At the interface of these theories lies the notion of a coalgebraic modal one-step language. One of our main contributions here is the introduction of the novel concept of a disjunctive basis for a modal one-step language. Generalizing earlier work, our main general result states that in case a coalgebraic modal logic admits such a disjunctive basis, then soundness and completeness at the one-step level transfer to the level of the full coalgebraic modal mu-calculus.  相似文献   

3.
There are several known Lindström-style characterization results for basic modal logic. This paper proves a generic Lindström theorem that covers any normal modal logic corresponding to a class of Kripke frames definable by a set of formulas called strict universal Horn formulas. The result is a generalization of a recent characterization of modal logic with the global modality. A negative result is also proved in an appendix showing that the result cannot be strengthened to cover every first-order elementary class of frames. This is shown by constructing an explicit counterexample.  相似文献   

4.
In this paper we present several fuzzy logics trying to capture different notions of necessity (in the sense of possibility theory) for Gödel logic formulas. Based on different characterizations of necessity measures on fuzzy sets, a group of logics with Kripke style semantics is built over a restricted language, namely, a two-level language composed of non-modal and modal formulas, the latter, moreover, not allowing for nested applications of the modal operator N. Completeness and some computational complexity results are shown.  相似文献   

5.
The Gödel-McKinsey-Tarski embedding allows to view intuitionistic logic through the lenses of modal logic. In this work, an extension of the modal embedding to infinitary intuitionistic logic is introduced. First, a neighborhood semantics for a family of axiomatically presented infinitary modal logics is given and soundness and completeness are proved via the method of canonical models. The semantics is then exploited to obtain a labelled sequent calculus with good structural properties. Next, soundness and faithfulness of the embedding are established by transfinite induction on the height of derivations: the proof is obtained directly without resorting to non-constructive principles. Finally, the modal embedding is employed in order to relate classical, intuitionistic and modal derivability in infinitary logic extended with axioms.  相似文献   

6.
7.
We define an out-degree for F-coalgebras and show that the coalgebras of outdegree at most κ form a covariety. As a subcategory of all F-coalgebras, this class has a terminal object, which for many problems can stand in for the terminal F-coalgebra, which need not exist in general. As examples, we derive structure theoretic results about minimal coalgebras, showing that, for instance minimization of coalgebras is functorial, that products of finitely many minimal coalgebras exist and are given by their largest common subcoalgebra, that minimal subcoalgebras have no inner endomorphisms and show how minimal subcoalgebras can be constructed from Moore-automata. Since the elements of minimal subcoalgebras must correspond uniquely to the formulae of any logic characterizing observational equivalence, we give in the last section a straightforward and self-contained account of the coalgebraic logic of D. Pattinson and L. Schröder, which we believe is simpler and more direct than the original exposition.  相似文献   

8.
We propose and investigate a uniform modal logic framework for reasoning about topology and relative distance in metric and more general distance spaces, thus enabling the comparison and combination of logics from distinct research traditions such as Tarski’s S4 for topological closure and interior, conditional logics, and logics of comparative similarity. This framework is obtained by decomposing the underlying modal-like operators into first-order quantifier patterns. We then show that quite a powerful and natural fragment of the resulting first-order logic can be captured by one binary operator comparing distances between sets and one unary operator distinguishing between realised and limit distances (i.e., between minimum and infimum). Due to its greater expressive power, this logic turns out to behave quite differently from both S4 and conditional logics. We provide finite (Hilbert-style) axiomatisations and ExpTime-completeness proofs for the logics of various classes of distance spaces, in particular metric spaces. But we also show that the logic of the real line (and various other important metric spaces) is not recursively enumerable. This result is proved by an encoding of Diophantine equations.  相似文献   

9.
A contravariant duality is constructed between the category of coalgebras of a given signature, and a category of Boolean algebras with operators, including modal operators corresponding to state transitions in coalgebras, and distinguished elements abstracting the sets of states defined by observable equations.?This duality is used to give a new proof that a class of coalgebras is definable by Boolean combinations of observable equations if it is closed under disjoint unions, domains and images of coalgebraic morphisms, and ultrafilter enlargements. The proof reduces the problem to a direct application of Birkhoff's variety theorem characterising equational classes of algebras. Received February 8, 2000; accepted in final form December 13, 2000.  相似文献   

10.
We extend the theory of unified correspondence to a broad class of logics with algebraic semantics given by varieties of normal lattice expansions (LEs), also known as ‘lattices with operators’. Specifically, we introduce a syntactic definition of the class of Sahlqvist formulas and inequalities which applies uniformly to each LE-signature and is given purely in terms of the order-theoretic properties of the algebraic interpretations of the logical connectives. We also introduce the algorithm ALBA, parametric in each LE-setting, which effectively computes first-order correspondents of LE-inequalities, and is guaranteed to succeed on a wide class of inequalities (the so-called inductive inequalities) which significantly extend the Sahlqvist class. Further, we show that every inequality on which ALBA succeeds is canonical. Projecting these results on specific signatures yields state-of-the-art correspondence and canonicity theory for many well known modal expansions of classical and intuitionistic logic and for substructural logics, from classical poly-modal logics to (bi-)intuitionistic modal logics to the Lambek calculus and its extensions, the Lambek-Grishin calculus, orthologic, the logic of (not necessarily distributive) De Morgan lattices, and the multiplicative-additive fragment of linear logic.  相似文献   

11.
In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(~) of Väänänen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.  相似文献   

12.
Implications in a category can be presented as epimorphisms: an object satisfies the implication iff it is injective with respect to that epimorphism. G. Ro?u formulated a logic for deriving an implication from other implications. We present two versions of implicational logics: a general one and a finitary one (for epimorphisms with finitely presentable domains and codomains). In categories Alg Σ of algebras on a given signature our logic specializes to the implicational logic of R. Quackenbush. In categories Coalg H of coalgebras for a given accessible endofunctor H of sets we derive a logic for implications in the sense of P. Gumm.  相似文献   

13.
We prove an existential analogue of the Goldblatt-Thomason Theorem which characterizes modal definability of elementary classes of Kripke frames using closure under model theoretic constructions. The less known version of the Goldblatt-Thomason Theorem gives general conditions, without the assumption of first-order definability, but uses non-standard constructions and algebraic semantics. We present a non-algebraic proof of this result and we prove an analogous characterization for an alternative notion of modal definability, in which a class is defined by formulas which are satisfiable under any valuation (the so-called existential validity). Continuing previous work in which model theoretic characterization for this type of definability of elementary classes was proved, we give an analogous general result without the assumption of the first-order definability. Furthermore, we outline relationships between sets of existentially valid formulas corresponding to several well-known modal logics.  相似文献   

14.
In this paper we deal with infinitary universal Horn logic both with and without equality. First, we obtain a relative Lyndon-style interpolation theorem. Using this result, we prove a non-standard preservation theorem which contains, as a particular case, a Lyndon-style theorem on surjective homomorphisms in its Makkai-style formulation. Another consequence of the preservation theorem is a theorem on bimorphisms, which, in particular, provides a tool for immediate obtaining characterizations of infinitary universal Horn classes without equality from those with equality. From the theorem on surjective homomorphisms we also derive a non-standard Beth-style preservation theorem that yields a non-standard Beth-style definability theorem, according to which implicit definability of a relation symbol in an infinitary universal Horn theory implies its explicit definability by a conjunction of atomic formulas. We also apply our theorem on surjective homomorphisms, theorem on bimorphisms and definability theorem to algebraic logic for general propositional logic.  相似文献   

15.
The paper introduces semantic and algorithmic methods for establishing a variant of the analytic subformula property (called ‘the bounded proof property’, bpp) for modal propositional logics. The bpp is much weaker property than full cut-elimination, but it is nevertheless sufficient for establishing decidability results. Our methodology originated from tools and techniques developed on one side within the algebraic/coalgebraic literature dealing with free algebra constructions and on the other side from classical correspondence theory in modal logic. As such, our approach is orthogonal to recent literature based on proof-theoretic methods and, in a way, complements it.  相似文献   

16.
Birkhoff Completeness in Institutions   总被引:1,自引:0,他引:1  
We develop an abstract proof calculus for logics whose sentences are ‘Horn sentences’ of the form: and prove an institutional generalization of Birkhoff completeness theorem. This result is then applied to the particular cases of Horn clauses logic, the ‘Horn fragment’ of preorder algebras, order-sorted algebras and partial algebras and their infinitary variants. the restriction of a logic to Horn sentences  相似文献   

17.
Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Indeed, they provide a uniform and semantic way of axiomatising all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective, canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper, we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for k-potent, commutative, integral, residuated lattices (k-CIRL). We show that any subvariety of k-CIRL is axiomatised by canonical formulas. The paper ends with some applications and examples.  相似文献   

18.
Based on a modification of Moss' and Parikh's topological modal language [8], we study a generalization of a weakly expressive fragment of a certain propositional modal logic of time. We define a bimodal logic comprising operators for knowledge and nexttime. These operators are interpreted in binary computation structures. We present an axiomatization of the set T of theorems valid for this class of semantical domains and prove – as the main result of this paper – its completeness. Moreover, the question of decidability of T is treated.  相似文献   

19.
In this paper we present a generalization of belief functions over fuzzy events. In particular we focus on belief functions defined in the algebraic framework of finite MV-algebras of fuzzy sets. We introduce a fuzzy modal logic to formalize reasoning with belief functions on many-valued events. We prove, among other results, that several different notions of belief functions can be characterized in a quite uniform way, just by slightly modifying the complete axiomatization of one of the modal logics involved in the definition of our formalism.  相似文献   

20.

We consider the restricted interpolation property IPR in modal logics. Earlier, the decidability of IPR over the modal logic S4 was proved and a finite list was found that contains all logics that can possess IPR over S4. However, this list contains some undue logics. The present article gives examples of the logics.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号