首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一个模拟移动车辆和矩形板相互作用的板-车条.用板-车条模拟直接与车辆相接触的板条部分;用传统的板有限条模拟未直接受车辆作用的板条部分.分析中,每辆车理想化为一个具有上、下部质量块,由弹簧和阻尼器连接的单足动力系统.计算示例表明,用该方法分析得到的结果与已有结果很吻合.  相似文献   

2.
The aim through this work is to suppress the transverse vibrations of an axially moving viscoelastic strip. A controller mechanism (dynamic actuator) is attached at the right boundary to control the undesirable vibrations. The moving strip is modeled as a moving beam pulled at a constant speed through 2 eyelets. The left eyelet is fixed in the sense that there is no transverse displacement (see Figure 1 ). The mathematical model of this system consists of an integro‐partial differential equation describing the dynamic of the strip and an integro‐differential equation describing the dynamic of the actuator. The multiplier method is used to design a boundary control law ensuring an exponential stabilization result.  相似文献   

3.
针对磁场环境中具有线载荷和弹性支承作用的面内运动薄板,给出了系统的势能、动能及电磁力表达式,应用Hamilton变分原理,推得面内运动条形板的磁固耦合非线性振动方程.考虑边界为夹支-铰支的约束条件,利用变量分离法和Galerkin积分法,得到了含简谐线载力和电磁阻尼力项的两自由度非线性振动微分方程组.应用多尺度法对主-...  相似文献   

4.
This article deals with the analysis of trolley impact on the dynamic behaviour of the flexible structure of the mega quayside container crane (QCC) boom, identified as the most relevant structural part. It develops a modelling method for the dynamic response of the large flexible structure of the QCC boom under a moving trolley. By using FEM the original structure of the whole crane structure is reduced to an equivalent model of the boom. The boom is in this way modelled as a system with distributed parameters, comprising reduced stiffnesses and lumped masses from other parts of the upper structure. The article looks at the moving mass approach to achieve the desired performance of the QCC. Differential equations of the mathematical model are obtained by using Lagrange's equations and the assumed mode method. The continuum is discretized by a finite number of admissible functions. Deterministic simulation gives the dynamic response of the boom for quay-to-ship container transfer. Results are obtained for the boom deflection and bending moment values, as well as for the dynamic amplification factor of deflection.  相似文献   

5.
The concept of submerged floating tunnel (SFT) has become an increasingly attractive idea to cross the straits. The structural solution in this scheme includes buoyancy force on tunnel body plus tension in mooring tethers. This paper investigates the effect of submergence on the dynamic response of SFT due to moving load. The inertial effect of the fluid is accounted for by evaluating the added mass of tunnel using two and three dimensional models. It is found that fluid–structure interaction increases dynamic amplification of the tunnel deflection (in some cases very significantly). The results show that although the 3D model predicts lesser inertial contribution for surrounding fluid, it is not always possible to associate the larger response with the 2D or 3D models. The discrepancy between the results of the two models decreases as the tether stiffness increases. This indicates that the adoption of Morison’s equation for evaluating the fluid loading on the tunnel is a reasonable assumption when the tether stiffness is high. It is also found that by increasing the tether stiffness, it is possible to introduce a major reduction in the dynamic amplification of the response and by this way control the dynamic response of the SFT.  相似文献   

6.
We study a dynamic contact problem for a thermoelastic von Kármán plate vibrating against a rigid obstacle. The plate is subjected to a perpendicular force and to a heat source. The dynamics is described by a hyperbolic variational inequality for deflections. The parabolic equation for a thermal strain resultant contains the time derivative of the deflection. We formulate a weak solution of the system and verify its existence using the penalization method. A detailed analysis of the velocity, acceleration, and reaction force of the solution is given. The singular nature of the dynamic contact makes it necessary to treat the acceleration and contact force as time-dependent measures with nonzero singular parts in the zones of contact. Accordingly, the velocity field over the plate suffers (global) jumps at a countable number of times with natural physical interpretations of the signs of the jumps.  相似文献   

7.
A mathematical model governing the dynamics of a constrained rigid-flexible manipulator moving in a horizontal plane is derived using Hamilton's principle. A new variable is introduced before the procedure of modal expansion in order to convert the non-homogeneous boundary condition into a homogeneous one. The static tip deflection of the flexible link is allowed in order to maintain the contact force between the end effector and the constrained path and this tip deflection is considered in both the inverse kinematics and the order reduction procedures. The state vector of the proposed controller consists of joint angle of the rigid link, its derivative and integral, the first deflection mode and its derivative, and the integral of contact force. A multivariable controller is proposed for the simultaneous motion and force control of the manipulator. The controller consists of a feedforward term which contributes the torque for the expected joint angles and the contact force, and a feedback term with the time varying optimal gains obtained from the Matrix Riccati equation. Computer simulation results show that this proposed controller is capable of performing the straight line tracking task satisfactorily under four different conditions.  相似文献   

8.
This paper presents the conditions that can possibly lead to chaotic motion and bifurcation behavior for a simply-supported large deflection thermo-elastic circular plate with variable thickness by utilizing the criteria of fractal dimensions, maximum Lyapunov exponents and bifurcation diagrams. The governing partial differential equation of the simply supported thermo-elastic circular plate with variable thickness is first derived by means of Galerkin method. Several different features including Fourier spectra, phase plot, Poincar’e map and bifurcation diagrams are numerically computed. These features are used to characterize the dynamic behavior of the plate subjected to various excitations of lateral loads and thermal loads. Numerical examples are presented to verify the conditions that lead to chaotic motion and the effectiveness of the proposed modeling approach. Numerical modeling results indicate that large deflection motion of a thermo-elastic circular plate with variable thickness possesses chaotic motions and bifurcation motion under different lateral loads and thermal loads. The simulation results also indicate that the periodic motion of a circular plate can be obtained for the convex or the concave circular plate. The dynamic motion of the circular plate is periodic for the cases including (1) the lateral loading frequency is within a specific range, (2) thermal and lateral loadings are operated in a specific range and (3) the thickness parameter is less than a specific critical value for the convex circular plate or greater than a specific critical value for the concave circular plate. The modeling results show that the proposed method can be employed to predict the non-linear dynamics of any large deflection circular plate with variable thickness.  相似文献   

9.
The well-known Bonnet theorem [1] is generalized to the case of motion of material points of variable mass moving under the action of a quasi-positional system of forces, i.e. of a system where each force is a function only of those parameters which determine the position of the point on the trajectory.  相似文献   

10.
Dynamic response of a thin rectangular plate traversed by a moving inertia load with arbitrary boundary condition is investigated through this paper. The inertia effect of mass is considered and relevant formulation is established based on the full-term of acceleration, employing the method of Boundary Characteristic Orthogonal Polynomials, BCOP. To acquire the complete solution of partial differential equations governing on the plate, the Galerkin method is used to separate the temporal function from the spatial one. The problem is formulated in the state space and applying the numerical method of Matrix Exponential the complete solution would be achieved. In the numerical studies, a comprehensive parametric study is performed for both cases of loading when inertia effect is included or neglected. Several mass and aspect ratios for the plate with major types of boundary conditions CCCC, SSSS, CFCF and SFSF are accounted for presenting the results. Dynamic amplification factor against velocity parameter is scrutinized within many graphs alongside with a time history analysis of dynamic deflection for the plate's mid-span. Investigating on the dynamic response concludes to the critical boundary condition upon moving mass. By introducing a conversion factor, the margin of inertia and the critical velocity where happened would be achieved, then through a regression analysis a curve fitting model of polynomials is proposed. Corresponding coefficients testify the goodness of fit for such regression which are reported within tables. Referring to this simplified model of conversion factor pertaining to the specific boundary condition, it would be possible to handle the problem in moving load case without undertaking the complexities arisen from inertia contribution into the formulation. Having derived the factor from simplified model which has been calculated for a specific mass and velocity ratio, then multiplying into the moving load response, the complete solution for moving mass would be achieved.  相似文献   

11.
Jarosław Rusin 《PAMM》2016,16(1):229-230
In this paper, the dynamic response of an Euler-Bernoulli beam and string system traversed by a constant moving force is considered. The force is moving with a constant velocity on the top beam. The complex system is finite, simply supported, parallel one upon the other and continuously coupled by a linear Winkler elastic element. The classical solution of the response of a beam-string system subjected to a force moving with a constant velocity has a form of an infinite series. The main goal of this paper is to show that in the considered case the aperiodic part of the solution can be presented in a closed, analytical form instead of an infinite series. The presented method of finding the solution in a closed, analytical form is based on the observation that the solution of the system of partial differential equations in the form of an infinite series is also a solution of an appropriate system of ordinary differential equations. The dynamic influence lines of complex systems may be used for the analysis the complex models of moving load. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A traveling mass due to its mass inertia has significant effects on the dynamic response of the structures. According to recent developments in structural materials and constructional technologies, the structures are likely to be affected by sudden changes of masses and substructure elements, in which the inertia effect of a moving mass is not negligible. The transverse inertia effects have been a topic of interest in bridge dynamics, design of railway tracks, guide way systems and other engineering applications such as modern high-speed precision machinery process. In this study an analytical–numerical method is presented which can be used to determine the dynamic response of beams carrying a moving mass, with various boundary conditions. It has been shown that the Coriolis acceleration, associated with the moving mass as it traverses along the vibrating beam shall be considered as well. Influences regarding the speed of the moving mass on the dynamic response of beams with various boundary conditions were also investigated. Results illustrated that the speed of a moving mass has direct influence on the entire structural dynamic response, depending on its boundary conditions. Critical influential speeds in the moving mass problems were introduced and obtained in numerical examples for various BC’s.  相似文献   

13.
A conventional problem of paper handling in a page-printing printer is to design a reliable paper path. Sometimes, this also affects the printing quality. The nonlinear theory of elastica has often been used to model paper deflection shape and to predict the paper path between some guiding rollers. The present paper proposes another method that can solve this problem more efficiently. Considering a piece of paper as a nonlinear beam, finite element analysis with geometric nonlinearity and manipulating the contact gap element between paper and guiding surfaces can be used to simulate the large-deflection behavior of paper. In this paper, the paper path in the vicinity of an OPC (organic photoconductive) drum is investigated with a general purpose finite element package. The effect of the electrostatic force between the OPC drum and the paper is considered, and the deformed shape of the paper for different forces lengths is obtained. According to those results an appropriate paper guide is added for an exact paper path.  相似文献   

14.
15.
The equations of the plane theory of for the elasticity bending of a long strip are reduced by the method of simple iterations to the solution of a system of two equations for the displacement of the axis of the strip and the shear stress. If the transverse load varies slowly along the strip, the resolvent equations reduce to a single equation that is identical to the classical equation for the bend of a beam. When a local load is applied, the resolvent equation acquires an additional singular term that is the solution of the equation for the shear stresses under the assumption that the displacement (deflection) is a function of small variability. The convergence of the solution in an asymptotic sense is demonstrated. The application of the method of simple iterations to the dynamic equations for the bending of a strip also leads to a system of two resolvent equations in the displacement of the axis of the strip and the shear stress. These equations reduce to a single equation that is identical with the well-known Timoshenko equation. Hence, the procedure for using the method of simple iterations that has been developed can be classified as a general method for obtaining Timoshenko-type theories. An equation is derived for the bending of a strip on an elastic base with an isolated functional singular part with two bed coefficients, corresponding to the transverse and longitudinal springiness of the base.  相似文献   

16.
The second order statistics in terms of mean and standard deviation (SD) of normalized nonlinear transverse dynamic central deflection (NTDCD) response of un-damped elastically supported functionally graded materials (FGMs) beam with surface-bonded piezoelectric layers under the action of moving load are investigated in this paper. The random system properties such as Young's modulus, Poisson's ratio, density, thermal expansion coefficients, piezoelectric materials, volume fraction exponent and external loading are modeled as uncorrelated random variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics combined with Newton–Raphson technique through Newmark's time integrating scheme using finite element method (FEM). The non-uniform temperature distribution with temperature dependent material properties is taken into consideration for consideration of thermal loading. The one parameter Pasternak elastic foundation with Winkler cubic nonlinearity is considered as an elastic foundation. The stochastic based second order perturbation technique (SOPT) and direct Monte Carlo simulation (MCS) are adopted for the solution of nonlinear dynamic governing equation. The influences of volume fraction exponents, temperature increments, moving loads and velocity, nonlinearity, slenderness ratios, foundation parameters and external loadings with random system properties on the NTDCD are examined. The capability of present stochastic model in predicting the NTDCD statistics are compared by studying their convergence with the existing results those available in the literature.  相似文献   

17.
The dynamic band/wheel system with a moving boundary is very different from that with a fixed length, it is a non-conservative mass system and the boundary position is not fixed. In this paper, the moving boundary is one unknown to be determined associated with the string displacement, and the partial differential equation of the transverse vibrations of the band and the transversality condition of the moving boundary are derived by the calculus of variation and Hamilton’s principle. In order to verify the dynamic formulation is correct, we reduce the governing equation and separation point to coincide with the previous studies. It is found that the physical properties of the moving boundary could be obtained from the geometric constraint of the band/wheel system.  相似文献   

18.
In this study, general non-uniform material-varying micro-beam models under a moving harmonic load/mass are investigated. Material variation is modeled by combining axial and thickness material grading models using exponential, linear, parabolic and sigmoidal functions. Beam is assumed to be resting on an elastic foundation and in this linear foundation model, foundation modulus is assumed to vary axially with respect to space variable in a non-linear manner ignoring the effect of mass density of foundation on the behavior of micro-beam. Cross-section variation through the length is formulated for both thickness and width variation. Governing equations for such comprehensive beam model is achieved using Hamilton's principle in conjunction with modified couple stress theory to add the scale-effects and solved by discussing explicit and implicit finite element methods with using various-steps and Wilson-theta method. Current methodology is verified using previous studies on simplified problems. A comprehensive parametric study is presented in order to indicate the influence of each design, material and fundamental terms on the forced vibration behavior of such structures under a moving harmonic/constant load/mass. It is shown that by appropriately choosing the material variation in bidirectional functionally graded beams dynamic vibration behavior of such structures could change significantly. Moreover, it is shown that varying cross-section, elastic foundation and type of harmonic moving mass can change the dynamic reaction of the general micro-beam model. From the influence of modified couple stress term on mechanical behavior of such structures it is concluded that this term has crucial effect in varying the dynamic deflections and it is important to acknowledge it in analyzing such structures.  相似文献   

19.
The generalized thermoelastic theory with thermal relaxation, in the context of Lord and Shulman theory, is used to investigate the magneto-thermoelastic problem of a thin slim strip placed in a magnetic field and subjected to a moving plane of heat source. The generalized magneto-thermoelastic coupled governing equations are formulated. By means of the Laplace transform and numerical Laplace inversion, the governing equations are solved. Numerical calculations for the considered variables are performed and the obtained results are presented graphically. The effects of moving heat source speed and applied magnetic field on temperature, stress and displacement are studied. It is found from the graphs that the temperature, thermally induced displacement and stress in the strip are found to decrease at large heat source speed, and the magnetic field significantly influences the variations of non-dimensional displacement and stress. However, it has no effect on the non-dimensional temperature.  相似文献   

20.
A hybrid method is proposed to predict the dynamic behavior of functionally graded (FG) plate subjected to a moving mass. The governing equations of motion of FG plate are derived using the Kirchhoff plate theory and Lagrange equation. Improved Rayleigh–Ritz solution is used to treat the spatial partial derivatives. Penalty method is employed to deal with the constraints, and the energy terms due to boundary conditions are included in Lagrange, hence it is not necessary to particularly consider the constraints in the modeling process. And the combination of simple polynomials and trigonometric functions is selected as the admissible functions. The advantage of this improvement in Rayleigh–Ritz method is that it is not needed to find satisfied admissible functions for different boundary conditions while the convergence of the solution is improved. Meanwhile, the method can be used to handle the versatile boundary conditions. Differential quadrature method (DQM) as a step-by-step time integration scheme is employed for discretization of temporal derivatives. The validated results show that the presented method is very reliable and efficient, and its convergence and accuracy are also better compared to finite element method for solving the dynamic problems of FG plate with moving loads (force and mass). Moreover, the influences of material properties and boundary conditions on maximum dynamic deflections are investigated, as well as moving speeds and inertial effects of loads (mass and force). Although only four edge boundary conditions are addressed in the present work, the proposed procedure is applicable for any arbitrary edge boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号