首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Na2Li3CoO4, the First Quaternary Oxocobaltate(III) of the Alkali Metals For the first time we obtained Na2Li3CoO4 by annealing intimate mixtures of Co3O4, Na2O2, and Li2O [Co : Na : Li = 1 : 2.2 : 10.1; 760°C; 21 d; Ag-tube] in form of transparent red single crystals. Structure Refinement [four-circle diffractometer data; AED2; MoKα-radiation; 1016 Io(hkl); R = 2.6%; Rw = 2.0%; space group Pnnm; Z = 4; a = 818.7(3), b = 799.4(2), c = 655.1(2) pm] confirms the isotypism to Na2Li3GaO4 [2] and Na2Li3FeO4 [3]. Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and the Charge Distribution were calculated. The isotypism of Na2Li3CoO4 and Na2Li3GaO4 is compared graphically.  相似文献   

2.
A Sodium‐Oxocobaltate(II)‐Hydroxide: Na5[CoO3]OH ≡ Na10[CoO3]{[CoO3](OH)2} Na10[CoO3]{[CoO3](OH)2} has been obtained from a redox reaction between cobalt metal and CdO in the presence of NaOH and Na2O at 600 °C (21 d) as red single crystals. The structure has been determined from single crystal data (IPDS‐data, Pnma, Z = 4, a = 988.5(1) pm, b = 1013.9(2) pm, c = 1186.3(2) pm, wR2 = 0.079). Furthermore IR data and aspects of the Madelung part of the lattice energy are presented.  相似文献   

3.
The electron density distributions of Na0.79CoO2 and Na0.84CoO2 have been obtained by the maximum entropy method and the Rietveld analysis using powder X-ray diffraction data at room temperature. In the Rietveld refinement, there are good agreement between x=0.79(4) and x=0.84(9), except for (008) and (108) peaks. The deviations of the two reflections are very large relative to those of other reflections, and the change in X-ray diffraction data is clearer than that in neutron diffraction data. This indicates that electron density distributions in NaxCoO2 are slightly modulated with increasing x. In fact, there are an obvious overlapping of the electron density between Co and O due to the Co–O hybridization in the CoO2 layer, but the two-dimensional networks in the electron densities of x=0.84(9) are suppressed by the existence of the O–O network on (008) plane. This is direct evidence of decrease of two-dimensional hybridization in the CoO2 layer with increasing a sodium content.  相似文献   

4.
Magnetic and thermodynamic properties of the LiCoO2 positive-electrode material used in lithium-ion battery were first examined. Partially deintercalated LiCoO2 that is Li0.75CoO2, showed definite anomaly in the magnetic susceptibility at T=ca. 175 K probably related to magnetic phase transition which was supported by observation of a weak anomaly in heat capacity. On the other hand, LiCoO2 did not show such magnetic phase transition as expected, whereas Li0.5CoO2 a weak one in the similar temperature range. These behaviors are discussed in association with the mixing of Co3+ and Co4+ electronic structures.  相似文献   

5.
Rb3CoO2 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Co3O4, RbN3 and RbNO3) were heated in a special regime up to 500 °C and annealed at this temperature for 100 h in silver crucibles. The crystal structure of the obtained red product was solved and refined by powder methods (Pnma, Z = 4, 12.3489(2), 7.6648(1), 6.2251(1) Å). Rb3CoO2 is isostructural with K3CoO2 and contains Co1+, which is coordinated by two oxygen atoms forming a slightly distorted dumb‐bell. Rb3CoO2 decomposes at 580 °C to Rb2O, Co and CoO.  相似文献   

6.
On the Knowledge of Oxocobaltates(II). Na4[CoO3], the First Nesocobaltate(II) Newly prepared transparent, blood red single crystals of Na4[CoO3] (Na2O/?CoO’? Na:Co = 4.4:1, cobalt tube, 550°C, 20d, dry argon), crystallize triclinically, P1, a = 8.144, b = 6.220, c = 5.758 Å; α = 117.5, β = 89.9, γ = 111.2 (diffractometer data), Z = 2. There are carbonate-like, isolated [CoO3] groups, respectively parameters and distances see text. 2358 symmetry independent reflections (automatical four cycle diffractometer PW 1100, Mo–Kα, graphite monochromator, 4° ? Θ ? 36°), R = 0.0597. The Madelung Part of the Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN and Mean Fictive Ionic Radii, MEFIR are calculated and discussed.  相似文献   

7.
The Crystal Structure of Na4CoO4 According to X-Ray investigations on single crystals, Na4CoO4 crystallizes triclinic (P1, a = 8.648, b = 5.702, c = 6.400 Å, α = 123.9°, β = 98.1°, γ = 99.2°). There are almost tetrahedral CoO4-groups; sodium is coordinated by four or five O2?.  相似文献   

8.
Oxocobaltates of Alkali Metals. On Li8CoO6. Hitherto unknown Li8CoO6, rubin- red single crystals, cristallizes according to WEISSENBERG and precession photographs (MoKα) hexagonal with a = 5.44 Å, c = 10.87 Å; c/a = 2.0; Z = 2, space group C? P63cm. Atomic parameters see text. The structure derives from a closest packing of O2?, ABACA … (The tetrahedral, ?isolated”? groups [CoO4] show remarkable short distances Co–O (1.66 Å), comparable with [CoO4] in Li4CoO4, being isotypic with Li4SiO4. The MADELUNG Part of Lattice Energy is calculated and discussed.  相似文献   

9.
The enthalpies of reactions of La2CoO4(cr) and CoCl2(cr) with hydrochloric acid were measured with an isothermal-jacket calorimeter. The results obtained and the available literature data were used to calculate the standard enthalpy of formation of La2CoO4(cr) at 298.15 K, Δf H o = ?2179 ± 7 kJ/mol.  相似文献   

10.
A New Cobaltate with Isolated Anion Structure: Li6[CoO4] For the first time transparent, blue single crystals of Li6[CoO4] have been prepared (Li2O/Na2O/?CoO”? (Li:Na:Co = 1.3:1.3:1), Co-tube, 580°C, 22 d). Corresponding to Li6□CoO; it is an ordered variant of the Li2O-type of structure: P42/nmc; a = 653.6(1) pm, c = 465.4(1) pm; Z = 2; dx = 2.75 g cm?3, dpyk = 2.71 g cm?3 (4-circle-diffractometer-data (PW 1100), AgKα; 230 from 936 I0(hkl); R = 9.58%, RW = 5.25%). Parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated and discussed. The magnetic properties are measured in the temperature range of 14–297 K.  相似文献   

11.
A Sodium Oxocobaltate(II) Sulfate: Na8[CoO3][SO4]2 Na8[CoO3][SO4]2 has been obtained from a redox reaction between cobalt metal and CdO in the presence of Na2SO4 and Na2O at 550 °C (15 d) as red single crystals. The structure has been determined from single crystal data (IPDS‐data, T = 170 K, Cmcm, Z = 4, a = 806.88(9) pm, b = 2232.1(3) pm, c = 705.97(9) pm, Rall = 0.047). Magnetic properties and spectroscopic investigations are reported and discussed within the Angular‐Overlap‐Model.  相似文献   

12.
The First Oxocobaltate of the Type A2CoIIO2: K2CoO2 = K4[OCoO2CoO] By “reaction with the cylinder surface” of intimate mixtures of K2O and CdO (molar ratio 1:1) in closed Co-Cylinders at 450°C during 73 d dark-red single-crystals of K2CoO2 were obtained. Structure solution and refinement (four-circle diffractometer-data, MoKα , 1 567 independent Io(hkl), none was omitted, R = 3.25%, Rw = 2.67%) result in a monoclinic unit cell containing anions [Co2O4]4? of two connected triangles similar to those of Rb10[CoIO2]2[CoO4]. MAPLE-values and Charge-distributions are given and discussed.  相似文献   

13.
The First Quaternary Oxide of Monovalent Cobalt: CsK2[CoO2] Dark-red single crystals of CsK2[CoO2] were obtained via ?reaction with the cyliner surface”? by heating powders of Cs2K2Cd3O5 in closed Co-cylinders at 500°C during 48 d. Structure solution and refinement (four-circle diffractometer data, MoKα , 147 independent Io(hkl), none was omitted, R = 3.42%, Rw = 2.24%) show close relationship with RbNa2[NiO2] [2]. The lattice-constants are: (powder data, standard deviations in parentheses) MAPLE calculations, investigations of magnetism and EPR measurement add to the monovalence of Co.  相似文献   

14.
In this paper, La0.4Ca0.6CoO3-coated LiNi1/3Mn1/3Co1/3O2 is successfully prepared by the sol–gel method associated with microwave pyrolysis method. The structure and electrochemical properties of the La0.4Ca0.6CoO3-coated LiNi1/3Co1/3Mn1/3O2 are investigated by using X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. XRD analyses show that the La0.4Ca0.6CoO3 coating does not change the structure of LiNi1/3Co1/3Mn1/3O2. The electrochemical performance studies demonstrate that 2 wt.% La0.4Ca0.6CoO3-coated LiNi1/3Co1/3Mn1/3O2 powders exhibit the best electrochemical properties, with an initial discharge capacity of 156.9 mAh g–1 and capacity retention of 98.9 % after 50 cycles when cycled at a current density of 0.2 C between 2.75 and 4.3 V. La0.4Ca0.6CoO3 coating can improve the rate performance because of the enhancement of the surface electronic/ionic transportation by the coating layer. EIS results suggest that the coating La0.4Ca0.6CoO3 plays an important role in suppressing the increase of cell impedance with cycling especially for the increase of charge-transfer resistance.  相似文献   

15.
The 5% CoO x /TiO2 catalyst, well-characterized earlier, consisting of complete CoTiO x overlayers on Co3O4 nano-particles (“Type A”) after calcination at 843 K but of clean Co3O4 particles (“Type B”) after a continuous wet oxidation of trichloroethylene (TCE) at 310 K forca. 6 h, has been used to investigate the influence of operating variables on the activity and the stability of the Type B Co3O4 particles during wet catalysis. At 310 K, the catalyst exhibited a 48% steady-state conversion with a transient behavior in activity up toca. 1 h on stream. As the reaction temperature increased, higher performances were achieved and the transient period disappeared, which might be due to easier decapsulation of the Type A Co3O4 particles at higher temperatures to form the Type B Co3O4 particles very active for this wet oxidation reaction. All wet activities were equal to those based on the concentration of Cl? ions produced, implying the complete oxidation of TCE to HCl and CO2, and significant decrease in pH occurred because of the HCl formation. The supported CoO x was very stable for the wet oxidation at 310 K, even forca. 36 h, and XPS measurements of samples of the catalyst following the wet oxidation for desired hours were in good agreement with our earlier proposed model for CoO x species.  相似文献   

16.
17.
Polycrystalline Ba2CoO4 has been synthesized by the ceramic method. X-ray and electron diffraction shows this phase to be monoclinic with a=5.8878(4); b=7.6158(6); c=10.3916(8); β=90.738(2). This compound is isostructural to Ba2TiO4 and the structure has been refined from X-ray powder diffraction data by using the Rietveld method. High resolution images interpreted in comparison to simulated images confirm the structure determined by X-ray diffraction. A crystal chemical study based on the cation arrays allows to establish a new relationship between Ba2CoO4 and 2HBaCoO3. Moreover, the Ba subarray seems to be related to the structure of elemental Ba.  相似文献   

18.
19.
A monoclinic phase of the misfit-layered cobalt oxide (Ca0.85OH)1.16CoO2 was successfully synthesized and characterized. It was found that this new material is a poly-type phase of the orthorhombic form of (CaOH)1.14CoO2, recently discovered by the present authors. Both the compounds consist of two interpenetrating subsystems: CdI2-type CoO2 layers and rock-salt-type double-atomic-layer CaOH blocks. However, these two phases exhibit a different stacking structure. By powder X-ray and electron diffraction (ED) studies, it was found that the two subsystems of (Ca0.85OH)1.16CoO2 have c-centered monoclinic Bravais lattices with common a=4.898 Å, c=8.810 Å and β=95.8° lattice parameters, and different b parameters: b1=2.820 Å and b2=4.870 Å. Chemical analyses revealed that the monoclinic phase has a cobalt valence of +3.1-3.2. Resistivity of the monoclinic phase is approximately 101-105 times lower than that of the orthorhombic phase. This suggests that the monoclinic phase is a hole-doped phase of the insulating orthorhombic phase. Furthermore, large positive Seebeck coefficients (∼100 μV/K) were observed near room temperature.  相似文献   

20.
《Solid State Sciences》2007,9(9):869-873
Orthorhombic K2NiF4-type (Ca1+xSm1−x)CoO4 (0.00  x ≤0.15) with space group Bmab has been synthesized by the polymerized complex route. The cell parameters (a and b) decrease, while the cell parameter (c) increases with increasing Co4+ ion content. The global instability index (GII) indicates that the crystal stability of (Ca1+xSm1−x)CoO4 is not influenced by the Co4+ ion content. (Ca1+xSm1−x)CoO4 is a p-type semiconductor and exhibits hopping conductivity in the small-polaron model at low temperatures. The magnetic measurement indicates that (Ca1+xSm1−x)CoO4 shows paramagnetic behavior above 5 K, and that the spin state of both the Co3+ and Co4+ ions is low. The Co4+ ion acts as an acceptor, and the electron transfer becomes active through the Co3+–O–Co4+ path as the Co4+ ions increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号