首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model has been developed to simulate turbulent fluid flow and solidification in the presence of a DC magnetic field in an extended nozzle for metal delivery to a single belt caster. This paper reports on predicted effects of DC magnetic field conditions in modifying flows and solidification behavior in the metal delivery system. It is shown that the application of a DC magnetic brake to the proposed system can result in a reasonably uniform feeding of melt onto the cooled moving belt. This, in turn, optimises the rate of even shell growth along the chilled substrate. In order to account for the effects of turbulence, a revised low-Reynolds kε turbulent model was employed. A Darcy-porosity approach was used to simulate fluid flow within the mushy solidification region. Simulations were carried out for plain carbon steel strip casting. The fully coupled transport equations were numerically solved using the finite volume method. The computed flow patterns were compared with those reported in the literature. The performance of the magnetic flow control device proposed in this work is evaluated and compared with flow modifications obtained by inserting a ceramic filter within the reservoir.  相似文献   

2.
A novel continuous casting process for clad steel slabs has been developed by suppressing the mixing of molten steels in the mold pool of continuous casting strand with a level DC magnetic field (LMF) installed in the mold. In this process, two molten steels of different chemical composition are discharged by two nozzles into the upper and the lower pools respectively to solidify in the outer and the inner layers as a clad steel slabs. The mechanism of separation into two layers has been elucidated by using a three dimensional MHD analysis. The numerical prediction employing Maxwell's equation, Ohm's law, and the turbulent flow model shows that the mixing of the different type of steels is suppressed by the electromagnetic dividing of the upper and the lower recirculating flows. The principle of the new process has also been verified by steel casting trials of the stainless-steel clad steel slabs with an 8-ton scale pilot continuous casting machine.  相似文献   

3.
In the present study, the turbulent gas flow dynamics in a two-dimensional convergent–divergent rocket nozzle is numerically predicted and the associated physical phenomena are investigated for various operating conditions. The nozzle is assumed to have impermeable and adiabatic walls with a flow straightener in the upstream side and is connected to a plenum surrounding the nozzle geometry and extended in the downstream direction. In this integrated component model, the inlet flow is assumed a two-dimensional, steady, compressible, turbulent and subsonic. The physics based mathematical model of the considered flow consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The system of the governing equations with turbulent effects is solved numerically using different turbulence models to demonstrate their numerical accuracy in predicting the characteristics of turbulent gas flow in such complex geometry. The performance of the different turbulence models adopted has been assessed by comparing the obtained results of the static wall pressure and the shock position with the available experimental and numerical data. The dimensionless shear stress at the nozzle wall and the separation point are also computed and the flow field is illustrated. The various implemented turbulence models have shown different behavior of the turbulent characteristics. However, the shear-stress transport (SST) kω model exhibits the best overall agreement with the experimental measurements. In general, the proposed numerical procedure applied in the present paper shows good capability in predicting the physical phenomena and the flow characteristics encountered in such kinds of complex turbulent flow.  相似文献   

4.
In continuous slab casting, the liquid steel is introduced into the mould via a submergered entry nozzle. This nozzle usually has two opposed orifices on its side walls, generating two diametrically opposed turbulent jets that are declined about 20° to the horizontal axis. These jets interact with the surrounding walls of the mould, which leads to an unstable flow situation and a self induced oscillation of the jets. Although both mould and nozzle geometry have two perpendicular symmetry planes, the oscillations are asymmetric. The fluid flow inside the mold is calculated with a 3D finite volume solver using turbulence models based on Reynolds-averaging. The massflow of the jets and the mould extensions are varied, and the numerical results are partially compared with PIV-measurements at a 1:1 scaled watermodel of the mould. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The jet oscillation observed in thin slab continuous casting is studied numerically by modelling the flow of liquid injected through a submerged entry nozzle and into a cavity. The oscillation relies on the exchange of fluid between recirculation cells on each side of the jet via a cross-flow through the gap between the nozzle shaft and the broad face of the cavity wall. Features of the oscillating jet are investigated by varying the resistance to cross-flow. This resistance occurs naturally since the nozzle obstructs cross-flow. The predicted oscillation can be manipulated by altering the cross-flow (through the use of an effective resistance force in the model) or stopped altogether to form a static asymmetrical flow pattern. Flow calculations are performed using a transient, two-dimensional, turbulent, fluid flow model.  相似文献   

6.
This paper considers numerically generated turbulence obtained by integrating the complete time-dependent three-dimensional Navier-Stokes equations. The simulated unidirectional turbulent flow, bounded by two parallel planes, is strongly inhomogeneous in the direction normal to the planes but homogeneous in the parallel directions. The resulting flow field, which is considered a numerical realization of fully developed turbulent channel flow, contains detailed information on spatial coherent flow structures as well as on the time-dependency and statistics of the three-dimensional velocity and pressure fields. Focussing here on the statistics of the numerically generated turbulence, second-moments and higher-moments are presented and compared with the most recent PTV and LDV laboratory measurements. It is concluded that direct numerical simulations are an invaluable approach to turbulence which complements field studies and laboratory investigations. Numerical experiments are now becoming a principal source of detailed and reliable information, which play a key role in the deepening of our understanding of turbulent flow phenomena.  相似文献   

7.
A computational study of the effect of stirrer position on fluid flow and solidification in a continuous casting billet mold with in-mold electromagnetic stirring has been carried out. The numerical investigation uses a full coupling method in which alternating magnetic field equations are solved simultaneously with the governing equations of fluid flow and heat transfer. An enthalpy-porosity technique is used for the solidification analysis while the magnetohydrodynamics technique is used for studying the fluid flow behavior under the electromagnetic field. The streamline, liquid fraction, and solid shell thickness at the mold wall have been predicted with and without EMS application at different positions along the length of the mold. Recirculation loops are seen to be formed above and below the stirrer position when fluid flow and electromagnetic field equations were solved, without incorporating the solidification model. Application of the solidification model interestingly resulted in the reduction of the size of the recirculation loops formed. The tangential component of velocity of the fluid near the solidification front, stirring intensity and the effective length of stirring below the stirrer decrease as the stirrer position is moved downwards. Significant changes in characteristics of solid shell formation like delay in initiation of solidification at the mold wall and formation of a gap in the re-solidified shell have been observed with change in stirrer position.  相似文献   

8.
S. Bühler  L. Kleiser 《PAMM》2012,12(1):541-542
A numerical simulation setup is presented which allows to study a circular jet flow configuration in which the nozzle is included in the simulation domain. Direct Numerical Simulations (DNS) are performed using up to 10th order compact finite-difference schemes which are stabilized by applying a mild low-pass filter. A parallelization approach has been implemented which shows good weak and strong scaling behavior. At the inflow the Synthetic Eddy Method is employed to generate turbulent fluctuations in the nozzle boundary layer with prescribed statistics, which are imposed by a sponge (forcing) layer technique. Simulation results for the jet flow field obtained at Reynolds number ReD = 19000 and a Mach number Ma = 0.9 as well as for the acoustic near-field are found to be in good agreement with recent nozzle-jet simulation results as well as experimental findings. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Dmitry Krasnov  Thomas Boeck 《PAMM》2016,16(1):631-632
We perform large-eddy simulations of turbulent MHD channel flow with a streamwise magnetic field using a pseudo spectral method. The streamwise magnetic field leads to turbulent drag reduction due to the selective Joule damping of certain flow structures. Near the walls, the turbulent mean velocity profile retains the logarithmic layer but the von Karman constant decreases with increasing magnetic field strength. In the outer region, the flow is characterized by persistent streaky structures of large streamwise extent, which lead to a rather flat mean velocity profile. In addition, the streamwise velocity fluctuations develop a pronounced second peak upon increasing the magnetic induction as well as a second logarithmic layer that increases in steepness. We find that Prandtl's classical mixing-length model with a variable Kármán constant can describe the modified logarithmic layer reasonably accurately in a wide range of Reynolds and Hartmann numbers. However, the flow modification near the center of the channel is not properly captured by this approach. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The numerical requirements for liquid metal MHD flows with free surfaces are considerable. A stable, time-accurate Navier–Stokes solver is needed, with the ability to handle free surfaces in the presence of strong internal circulations. In addition, the solver must avoid numerical instabilities associated with the free surface motion. Another requirement is the flexibility to calculate the two-way coupling between liquid flow and evolution of the electromagnetic field. Furthermore, in some circumstances it is necessary to calculate the evolving field both inside and outside the liquid domain. Finally, there is the issue of turbulence modelling, complicated by the anisotrophic character of the turbulent energy induced by the magnetic field. To do this with any efficiency requires substantial segregation of the variables in the algorithm. This paper describes an approach using operator splitting and conjugate gradient methods, and developed with the partial differential equations solving program Fastflo. The paper emphasizes the computational electromagnetic aspects associated with the motion of the free surface.  相似文献   

11.
The generation of vortical structures by a strong magnetic dipole field in a liquid metal duct flow is studied by means of three-dimensional direct numerical simulations. The dipole is considered as the paradigm for a magnetic obstacle which will deviate the streamlines due to Lorentz forces which act on the fluid elements. Our model uses the quasi-static approximation applicable in the limit of small magnetic Reynolds numbers. The analysis covers the stationary flow regime at smaller flow Reynolds numbers Re as well as the fully time-dependent regimes at higher values with a turbulent flow in the wake of the magnetic obstacle. We present a systematic study of these two basic flow regimes on Re and the Hartmann number Ha, a measure of the strength of the magnetic dipole field. Furthermore, three orientations of the dipole are compared, the streamwise, spanwise and wall-normal ones. The most efficient generation of turbulence at a fixed distance above the duct occurs for the spanwise orientation in which we can observe the formation of Hartmann layers at the top plate. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Non-contact flow control and flow measurements in hot and aggressive metal melts are big challenges in metallurgical applications. Time-of-Flight Lorentz force velocimetry (ToF LFV) is an electromagnetic measurement technique to meet these challenges. Our experimental results demonstrate that this method is well suited to measure flow rate in turbulent liquid metal channel flow without knowledge of both melt and magnetic field properties. Moreover, the measured flow profiles are in very good agreement with predictions of numerical simulations using the commercial program Package FLUENT MHD. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The turbulent dispersion of non-evaporating droplets in an axisymmetric round jet issuing from a nozzle is investigated both experimentally and theoretically. The experimental data set has a well-defined inlet boundary with low turbulence intensity at the nozzle exit, so that droplet dispersion is not affected by the transport of nozzle-generated fluctuating motion into the jet, and is influenced solely by turbulence in the gas phase produced in the shear layer of the jet. This data set is thus ideal for testing algebraic models of droplet fluctuating motion that assume local equilibrium with the turbulence in the gas phase. Moreover, the droplet flux measurements are sufficiently accurate that conservation of the total volume flow of the droplet phase has been demonstrated. A two-fluid turbulence modelling approach is adopted, which uses the kε turbulence model and a simple algebraic model that assumes local equilibrium to predict the fluid and droplet turbulent correlations, respectively. We have shown that the kε turbulence model lacks generality for predicting the spread of momentum in jets with and without a potential core. However, in general, the model predicts the radial dispersion of droplets in the considered turbulent jet with reasonable accuracy over a broad range of droplet sizes, once deficiencies in the kε turbulence model are taken into account.  相似文献   

14.
The contactless inductive flow tomography (CIFT) is a technique to reconstruct the velocity in electrically conducting melts using magnetic fields. One of its application could be the velocity reconstruction in the mould of the continuous casting process. In this paper, we present the numerical investigation and first measurements of the induced magnetic field taken in our lab on a small model of a continuous casting mould. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
突然扩张方管中三维湍流流动的数值模拟   总被引:2,自引:0,他引:2  
本文运用SIMPLEC算法计算了突然扩张方管中的三维湍流流动,湍流模型采用k-ε模型。计算结果详细反映了突然扩张方管中三维湍流流场。从本文结果可以看出,由于突然扩张方管几何形状非轴对称,且尺寸有限,边壁对流场的作用是不可忽略的。以往文献中常见的二维突然扩张湍流的数值模拟结果与三维情况有较大差别,在靠近边壁的区域差别很大,因此对于突然扩张方管中湍流流动的数值模拟应用三维模拟。本文计算所得突然扩张截面后主回流区长度与实验结果接近。本文方法可为数值模拟突然扩张方管中湍流流场及各物理参数的分布提供有效工具。  相似文献   

16.
17.
The task of this study is to investigate the influence of various geometric parameters and pressure ratios on the Coanda ejector performance. For numerically investigations we use an implicit formulation of the compressible Reynolds-average Navier-Stokes equations (RANS) for axisymmetric flow with a shear stress transport k − ω (SST model) turbulence model. The numerically results was obtained for a total pressure range 1-5 Bars, imposed at the reservoir inlet. The effect of various factors, such as, the pressure ratio, primary nozzle and ejector configurations on the system performance has been evaluated based on defined performance parameters. The numerical results have been compared with theoretical and experimental results for a given Coanda ejector configuration. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A large eddy simulation (LES) approach is used to study the in-cylinder turbulent flows of a direct injection gasoline engine, with emphasis on the relationship between the in-cycle turbulent fluctuations and the inter-cycle, i.e. cycle-to-cycle variation (CCV). In total 13 continuous cycles have been calculated, both the single cycle result and phase-averaged result have been compared with our PIV measurements, and reasonable agreements are obtained. Computational results show that, the in-cylinder turbulence is induced primarily by the intake jet. At the early stage of the intake stroke, both the turbulent fluctuations and cyclic variations are intensive and they are of the same magnitude order. While in the compression stroke, the decay of turbulent fluctuations are greater than that of the cyclic variations, and the ratio between them is less than 15%, and the flow field tends to be isotropic. This study demonstrated that LES is capable to describe more realistically details and rules of the in-cylinder turbulent flow and the cycle-to-cycle variations. By using LES coupled with the Q-criterion, the large scale coherent structures in the turbulent flow field can be identified.  相似文献   

19.
We study turbulent channel flow of an electrically conducting liquid with a homogeneous magnetic field imposed in the spanwise direction. The Lorentz force is modelled using the quasistatic approximation. Direct and large–eddy simulations are performed for hydrodynamic Reynolds numbers Re=10000 and Re=20000 and the Hartmann number varying in a wide range. The main effect of the magnetic field is the suppression of turbulent velocity fluctuations and momentum transfer in the wall–normal direction. Comparing the results from direct and large–edddy simulations we show that the dynamic Smagorinsky model accurately reproduces the flow transformation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
首先定性地分析了流线曲率效应对流场湍流结构的影响,然后以U型槽道流为典型算例,对多种湍流模型进行了评估.评估的模型包括:线性涡粘性模型,二阶和三阶非线性涡粘性模型,二阶显式代数应力模型和Reynolds应力模型.评估结果表明,性能良好的三阶非线性涡粘性模型,如黄于宁等人发展的HM模型以及CLS模型,可以较好地描述流线的曲率效应对湍流结构的影响,如凸曲率作用下内壁附近湍流强度的衰减和凹曲率作用下外壁附近湍流的增强,并且较好地确定了管道下游的分离点位置和分离泡长度,其预测的结果和实验符合较好,与Reynolds力模型的结果十分接近,因此可以较好地应用于具有曲率效应的工程湍流的计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号