首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetic resonance imaging (MRI) scanners can produce noise measuring over 130 dB SPL. This noise stimulates the auditory nervous system, limiting the dynamic range for stimulus driven activity in functional MRI (fMRI) experiments and can influence other brain functions. Even for structural scans it causes subject anxiety and discomfort in addition to the impediment to communications. Here we describe the realization and validation of a sound system for sound presentation inside an MRI scanner and the modifications to a standard active noise control technique for use in the noisy and compact environment of the scanner. This paper provides a review of the technology available for the presentation of audio stimuli in an MRI environment and the modifications required for the active control of scanner noise. Some of the content has been previously published [Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR. Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation. J Acoust Soc Am 2001;110(6):3041-54; Levitt H. Transformed up-down methods in psychoacoustics. J Acoust Soc Am 1971;49:467-77], but this paper goes further in describing the stages of development as the system performance was optimised. The performance of the system and both the objective and subjective reduction of the scanner noise are reported. Finally, we discuss recent improvements to the system that are currently being evaluated and describe the theory of opto-acoustical transducers that operate on the principle of light modulation. These are immune from, and do not create, electro-magnetic interference (EMI) and radio-frequency interference (RFI).  相似文献   

2.
The basic concepts necessary to understand the physical basis of NMR imaging are presented in this didactic article. It is intended as a starting point for the radiologist or medical physicist who is addressing the topic of NMR for the first time. The basis of the NMR phenomena is described with introduction of the concepts of magnetic moment, magnetic fields, magnetic resonance, net magnetic moment of a sample, NMR excitation and NMR emission. The equipment necessary to observe these NMR properties of matter is summarized as well as the procedures for basic pulsed NMR experiments. The physical concepts for spatial localization of NMR emissions are introduced with physical analogies to stringed musical instruments. Several alternative imaging modalities are compared with greatest emphasis on the inversion recovery technique which yields images weighted by tissue T1 values. The six subsystems of an NMR imaging device (primary magnet, computer, radio equipment, magnetic gradient, data storage and display subsystems) are described in an overview fashion. The paper is followed by a series of study questions to test the reader's comprehension of basic NMR imaging concepts.  相似文献   

3.
The acoustic noise generated during an MRI sequence can be effectively reduced with the help of soft gradient pulses using sinusoidal ramps. The long slope duration, however, leads to long acquisition times. The use of interleaved spiral trajectories, calculated with long gradient slopes, is proposed to reduce the acquisition time while maintaining low acoustic noise levels. The practibility of this approach is demonstrated on phantom and volunteer images.  相似文献   

4.
A combination of the constant-time spectral-spatial imaging (CTSSI) modality and projection-reconstruction modality was tested to simplify data acquisition for multi-dimensional CW EPR spectral-spatial imaging. In this method, 3D spectral-spatial image data were obtained by simple repetition of conventional 2D CW imaging process, except that the field gradient amplitude was incremented in constant steps in each repetition. The data collection scheme was no different from the conventional CW imaging system for spectral-spatial data acquisition. No special equipment and/or rewriting of existing software were required. The data acquisition process for multi-dimensional spectral-spatial imaging is consequently simplified. There is also no “missing-angle” issue because the CTSSI modality was employed to reconstruct 2D spectral-spatial images. Extra reconstruction processes to obtain higher spatial dimensions were performed using a conventional projection-reconstruction modality. This data acquisition technique can be applied to any conventional CW EPR (spatial) imaging system for multi-dimensional spectral-spatial imaging.  相似文献   

5.
The statistical properties of background noise such as its standard deviation and mean value are frequently used to estimate the original noise level of the acquired data. This requires the knowledge of the statistical intensity distribution of the background signal, that is, the probability density of the occurrence of a certain signal intensity. The influence of many new MRI techniques and, in particular, of various parallel-imaging methods on the noise statistics has neither been rigorously investigated nor experimentally demonstrated yet. In this study, the statistical distribution of background noise was analyzed for MR acquisitions with a single-channel and a 32-channel coil, with sum-of-squares (SoS) and spatial-matched-filter (SMF) data combination, with and without parallel imaging using k-space and image-domain algorithms, with real-part and conventional magnitude reconstruction and with several reconstruction filters. Depending on the imaging technique, the background noise could be described by a Rayleigh distribution, a noncentral chi-distribution or the positive half of a Gaussian distribution. In particular, the noise characteristics of SoS-reconstructed multichannel acquisitions (with k-space-based parallel imaging or without parallel imaging) differ substantially from those with image-domain parallel imaging or SMF combination. These effects must be taken into account if mean values or standard deviations of background noise are employed for data analysis such as determination of local noise levels. Assuming a Rayleigh distribution as in conventional MR images or a noncentral chi-distribution for all multichannel acquisitions is invalid in general and may lead to erroneous estimates of the signal-to-noise ratio or the contrast-to-noise ratio.  相似文献   

6.
7.
A modified single-point imaging (SPI) technique using a variable phase encoding interval is proposed. This method is based on the minimization of the phase encoding interval for further signal-to-noise ratio (SNR) optimization. This is particularly beneficial when the maximum gradient amplitude limits an optimal phase encoding interval, and the resulting SNR suffers from T(2)-related signal attenuation. Theoretical calculation of the SNR and simulation of the point spread function (PSF) for the different experimental parameters are presented. Experiments using a rubber sample (T(2)* approximately 73 micros) and a tooth (bi-exponential relaxation: T(2,1)*=111 micros and T(2,1)*=872 micros) showed a significant increase in SNR (>3 and >2, respectively) when compared with images acquired with conventional SPI.  相似文献   

8.
A method for imaging of chemical shift or magnetic field distributions   总被引:1,自引:0,他引:1  
A phase encoding method for imaging of chemical shift or magnetic field distributions is described. The method utilizes the spin-echo principle and the time period between signal collection and excitation is constant but the time period between excitation and the 180 degrees pulse is varied by constant steps. The method is relatively easy to apply with the Fourier or projection reconstruction methods.  相似文献   

9.
Liver iron concentration was determined in 28 patients by magnetic resonance imaging using the method of Gandon et al. (Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363:357-362). The result showed a significant correlation with blood plasma ferritin content (Spearman's r=.66; P<.001) and a slightly improving correlation coefficient when limited to those patients not known to have inflammation (r=.82; n=17; P<.001). Zooming in on patients with hematologic disease also had a beneficial effect on the correlation between liver iron content and plasma ferritin level (r=.79; n=13; P=.001). It is concluded that in patients without inflammation and in patients with hematologic disease, the content of ferritin in blood is a better predictor of liver iron content than in other patient categories.  相似文献   

10.
The purpose of this study was to investigate the feasibility of diffusion-weighted imaging (DWI) in detecting synovitis of wrist and hand in patients with rheumatoid arthritis (RA) and evaluate its sensitivity, specificity and accuracy as compared to T2-weighted imaging (T2WI) with short tau inversion recovery (STIR) with the reference standard contrast-enhanced magnetic resonance imaging (CE-MRI). Twenty-five patients with RA underwent MR examinations including DWI, T2WI with STIR and CE-MRI. MR images were reviewed for the presence and location of synovitis of wrist and hand. The sensitivity, specificity and accuracy of DWI and T2WI with STIR were calculated respectively and then compared. All patients included in this study completed MR examinations and yielded diagnostic image quality of DWI. For individual joint, there was good to excellent inter-observer agreement (k = 0.62–0.83) using DWI images, T2WI with STIR images and CE-MR images, respectively. There was a significance between DWI and T2WI with STIR in analyzing proximal interphalangeal joints II–V, respectively (P < 0.05). The k-values for the detection of synovitis indicated excellent overall inter-observer agreements using DWI images (k = 0.86), T2WI with STIR images (k = 0.85) and CE-MR images (k = 0.91), respectively. Overall, DWI demonstrated a sensitivity, specificity and accuracy of 75.6%, 89.3% and 84.6%, respectively, for detection of synovitis, while 43.0%, 95.7% and 77.6% for T2WI with STIR, respectively. DWI showed positive lesions much better and more than T2WI with STIR. Our results indicate that DWI presents a novel non-invasive approach to contrast-free imaging of synovitis. It may play a role as an addition to standard protocols.  相似文献   

11.
Magnetic resonance spectroscopic imaging (MRSI) provides information about the spatial metabolic heterogeneity of an organ in the human body. In this way, MRSI can be used to detect tissue regions with abnormal metabolism, e.g. tumor tissue. The main drawback of MRSI in clinical practice is that the analysis of the data requires a lot of expertise from the radiologists. In this article, we present an automatic method that assigns each voxel of a spectroscopic image of the brain to a histopathological class. The method is based on Canonical Correlation Analysis (CCA), which has recently been shown to be a robust technique for tissue typing. In CCA, the spectral as well as the spatial information about the voxel is used to assign it to a class. This has advantages over other methods that only use spectral information since histopathological classes are normally covering neighbouring voxels. In this paper, a new CCA-based method is introduced in which MRSI and MR imaging information is integrated. The performance of tissue typing is compared for CCA applied to the whole MR spectra and to sets of features obtained from the spectra. Tests on simulated and in vivo MRSI data show that the new method is very accurate in terms of classification and segmentation. The results also show the advantage of combining spectroscopic and imaging data.  相似文献   

12.
To evaluate the potential of magnetic resonance imaging (MRI) in detection and quantification of mitral regurgitation, 26 pts. with echocardiographically or angiographically documented mitral regurgitation were examined using a 0.5 Tesla superconducting magnet. In each patient a multislice-multiphase study in a sagittal-coronal double angulated projection (four-chamber view equivalent) was performed to assess left and right ventricular volumes, ejection fraction and regurgitant fraction. Additionally a blood flow sensitive cine-study (fast field echo: FFE) was done to visualize direction and area of regurgitant jet. MRI data were compared with quantitative and qualitative assessment of mitral regurgitation by angiography, 2D echocardiography, Doppler sonography and color flow mapping. Using the FFE mode MRI was able to detect the regurgitant jet as a typical signal loss within the left atrium in all patients. The ratio of regurgitant jet area/left atrium area as determined by MRI showed a correlation with a comparable ratio from color Doppler sonography of R = 0.87 (p < 0.001). There was also good agreement in semiquantitative grading of mitral regurgitation between MRI and angiography (R = 0.77, p < 0.001). The determination of left and right ventricular stroke volume allowed the calculation of the regurgitant fraction, which showed a correlation with invasively determined regurgitation fraction of R = 0.84 (p < 0.001). These data provide additional information that MRI may be useful as a noninvasive technique to detect and quantify mitral regurgitation.  相似文献   

13.
Initial clinical experience with magnetic resonance imaging (MRI) of the abdomen using short TI inversion-recovery (STIR) pulse sequences is described and compared with X-ray CT in a variety of abdominal disease. The extent of abnormality shown with MRI was greater than that with CT in 21 of 30 cases and equal in 9 cases. Lesion contrast was greater with MRI in 15 cases, equal in 14 and less in 1. The level of artefact was equal in 27 cases and greater with MRI in 3 cases. The STIR pulse sequence has significant advantages in producing high soft-tissue contrast, controlling respiratory artefact, avoiding confusion with intra-abdominal fat and identifying bowel loops.  相似文献   

14.
The snapshot FLASH sequence uses a subsecond scan time and a small flip angle in conjunction with nonsteady-state acquisition to produce high-contrast images with minimum motion artifacts. The magnetisation evolves towards an equilibrium state in the course of a scan and it is the form of this approach to equilibrium which determines the contrast and signal-to-noise ratio (SNR) obtained. The contrast obtained is strongly dependent on the phase encoding scheme used. If the flip angle is increased, and the resulting transverse coherences refocused, then the SNR is improved while the contrast is little changed.  相似文献   

15.
Magnetic resonance imaging sequences utilizing limited flip angles and gradient echoes yield rapid (less than 2 min) dynamic images of the cardiovascular system. These images contain both accurate anatomical and functional information. Using a gradient refocused acquisition in the steady state (GRASS) in the CINE mode, we studied the relationship between gradient echo signal intensity and velocity of steady and pulsatile flow in a phantom simulating medium to large vessels. Images were acquired on a 1.5 Tesla system (repetition TIME = 21 ms, echo TIME = 12 ms, flip ANGLE = 30 degrees). Data from each pulse interval were sorted in 16 images. Signal intensities from flow tube lumina and surrounding stationary water jacket were used to calculate contrast ratios which were compared to velocity measurements made with electromagnetic (EM) flow probes outside the magnet room. During steady flow, signal intensity contrast ratios increased with increasing flow and in a 10 mm thick slice, reached a peak at 48 cm/s, and declined for velocities up to 90 cm/s. Changes in instantaneous velocity during pulsatile flow correlated well (r > .88) with signal intensity changes up to a maximum mean velocity of 17 cm/s. Total signal intensity from the lumen for an “R to R” interval correlated extremely well (r > .97) with mean pulsatile flow velocities up to 30 cm/s. The excellent correlation between gradient echo signal intensity and actual flow velocities suggests that this imaging sequence might be useful for evaluating normal and pathologic flow phenomena.  相似文献   

16.
17.
This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR imaging intensities solely.  相似文献   

18.
Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.  相似文献   

19.
环形编码孔成像技术具有高的探测效率和信噪比,是一种解决低强度脉冲辐射源成像较好的技术。基于该技术,利用Geant4建立环形编码孔中子成像的模拟过程,获取6个不同位置的点扩散函数(PSF)和编码图像。根据空间移变图像分块原理,将图像分成矩形和圆形分块,每一块图像用RL迭代法复原,去除边界明显畸变的像素,这些像素强度由相邻的图像块像素到边界距离的加权系数叠加而成。模拟结果表明,该方法提高了图像复原效果,能够更好地诊断射线区域的空间分布情况。  相似文献   

20.
Water soluble FeOOH nanospindles with small size were synthesized by a simple hydrolysis method of inorganic salts and water bath treatment with different incubation time. The morphology, microstructure, magnetic resonance imaging (MRI) performance and cytotoxicity of the as-prepared FeOOH nanospindles were investigated, respectively. The results showed that the longitudinal length of FeOOH nanospindles was about 40-50 nm, and the incubation time had important effect for the morphology and production rate of FeOOH nanospindles. MRI test showed that the longitudinal and transverse relaxivities (r1 and r2 values) of FeOOH nanospindles were about 3.06 mM−1 s−1 and 5.06 mM−1 s−1, respectively. Furthermore, the experimental results of the Prussian Blue staining showed the clusters of FeOOH nanospindles in the cytoplasm of the labeled cells, and the cytotoxicity characterization indicated that FeOOH nanospindles have low cytotoxicity. Therefore, the as-prepared FeOOH nanospindles will have potential applications as T1- and T2-weighted MRI contrast agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号