首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of novel and operationally simple synthetic routes to carbene-metal-amido (CMA) complexes of copper, silver and gold relevant for photonic applications are reported. A mild base and sustainable solvents allow all reactions to be conducted in air and at room temperature, leading to high yields of the targeted compounds even on multigram scales. The effect of various mild bases on the N−H metallation was studied in silico and experimentally, while a mechanochemical, solvent-free synthetic approach was also developed. Our photophysical studies on [M(NHC)(Cbz)] (Cbz=carbazolyl) indicate that the occurrence of fluorescent or phosphorescent states is determined primarily by the metal, providing control over the excited state properties. Consequently, we demonstrate the potential of the new CMAs beyond luminescence applications by employing a selected CMA as a photocatalyst. The exemplified synthetic ease is expected to accelerate the applications of CMAs in photocatalysis and materials chemistry.  相似文献   

2.
Gold catalysis   总被引:1,自引:0,他引:1  
Catalysis by gold has rapidly become a hot topic in chemistry, with a new discovery being made almost every week. Gold is equally effective as a heterogeneous or a homogeneous catalyst and in this Review we attempt to marry these two facets to demonstrate this new found and general efficacy of gold. The latest discoveries are placed within a historical context, but the main thrust is to highlight the new catalytic possibilities that gold-catalyzed reactions currently offer the synthetic chemist, in particular in redox reactions and nucleophilic additions to pi systems. Indeed gold has proved to be an effective catalyst for many reactions for which a catalyst had not been previously identified, and many new discoveries are still expected.  相似文献   

3.
In this work, we report the size tunable synthesis of water-dispersed gold nanoparticles by using octadecylamine (ODA) as the reducing agent, that electrostatically complexes with the chloroaurate ions, reduces them, and subsequently caps the gold nanoparticles. Amine-capped gold nanoparticles, thus formed, were subsequently coordinated with a secondary monolayer of an anionic surfactant, sodium bis(2-ethylhexyl)-sulfosuccinate (AOT) which helps in providing sufficient hydrophilicity to the gold nanoparticles. Functionalized gold nanoparticles were characterized by UV-vis, IR spectrophotometric, dynamic light scattering, zeta-potential and transmission electron microscopic techniques, which demonstrated high stability of gold nanoparticles in aqueous media, indicating stabilization via bilayers of ODA and AOT. The gold nanoparticles were further conjugated with a protein (bovine serum albumin) and the interaction was investigated by circular dichroism studies as well as by measuring the fluorescence quenching of the tryptophan residues of protein molecules after the binding of nanoparticles to specific sites of the protein. The binding constant and the stoichiometry values indicated that the particles with larger core size are less site-specific but show higher binding affinity with protein molecules. The use of a bio-compatible synthetic process and the stabilization of the gold nanoparticles by ODA and AOT are interesting from the point of view of making bioprobes for life science applications.  相似文献   

4.
We report the development of a new templating molecule designed by the modification of a helix-forming β-1,3-glucan polysaccharide to the cationic semiartificial one and its application to the fabrication of one-dimensional (1D) gold nanostructures by simple photoirradiation. Transmission electron microscopy observation showed that Au(III) ions are primarily reduced to gold nanoparticles self-assembling into the 1D array with the aid of the cationic β-1,3-glucan polysaccharide, which gradually fuse into the 1D gold nanostructure with the tapelike structure. The gold nanotape structure could not be created by neutral β-1,3-glucan polysaccharides or random coil synthetic cationic polymers. These findings consistently support the view that Au(III) ions are reduced by unmodified OH groups to gold nanoparticles under the photoirradiation, which are wrapped in the helical structure of the cationic β-1,3-glucan polysaccharide and eventually fuse into gold nanotapes. One may regard, therefore, that this cationic β-1,3-glucan polysaccharide can act as an "all-in-one" template playing three roles of reduction, 1D arrangement, and fusion of gold nanoparticles. In addition, we found an interesting phenomenon that the obtained gold nanotapes coated with cationic β-1,3-glucan polysaccharides show unique surface-enhanced Raman scattering for anionic porphyrines organized on the surface of gold nanotapes through the electrostatic interaction.  相似文献   

5.
Multicomponent reactions are attractive for assembling functionalized heterocyclic compounds. To this end, an efficient gold‐catalyzed three‐component domino reaction to form oxazoles directly from imines, alkynes, and acid chlorides is presented. The reaction proceeds in a single synthetic step by using a gold(III)–N,N′‐ethylenebis(salicylimine) (salen) catalyst to give trisubstituted oxazoles in up to 96 % yield. The substrate scope, a mechanistic study exploring the role of the gold catalyst, and the synthetic applications of the oxazole products are discussed.  相似文献   

6.
Cyclobutanones are synthetically versatile compounds that often require extensive effort to access. Herein, we report a facile synthesis of cyclobutanones based on the C(sp3)?H insertion chemistry of oxidatively generated gold carbenes. Various cyclobutanones were obtained in synthetically useful yields from substrates with minimal structural prefunctionalization. This discovery reveals new synthetic utilities of gold‐catalyzed oxidative transformations of alkynones.  相似文献   

7.
Exploration of elementary reactions in organometallic catalysis is an important method with which to discover new reactions. In this article, we report a gold(I)-catalyzed iodo-alkynylation of benzyne involving the merging of challenging migratory insertion and an oxidative addition process in gold catalytic cycle. A wide range of structurally diverse alkynyl iodides are good coupling partners in this iodo-alkynylation transformation. Both aliphatic and aromatic alkynyl iodides can react with benzynes smoothly to afford highly functionalized 1,2-disubstituted aromatics in moderate to good yields. Its good functional group compatibility and late-stage application of complex molecules demonstrate its synthetic robustness. Studies of the mechanism reveals the feasibility of oxidative addition and the DFT calculations demonstrate the possible migratory insertion of benzyne into AuIII-carbon bonds in the AuI/AuIII redox catalytic cycle, representing an important step towards an elementary reaction in gold chemistry research.  相似文献   

8.
This review updates the explosive development of gold catalysis for organic transformation focusing on the current literature over last 3 years. Recent investigations have shown that gold catalysis provides catalytically active systems, whereas selectivity and reusability are advantages over noncatalyzed organic transformations. The collected literature is focusing for new organic reactions and synthetic methodologies. Gold can also be suggested for green processes dedicated to fine chemicals, pharmaceuticals, and the food industry due to its recognized biocompatibility. The current review is focused on new methods in the organic synthesis that could be of interest in the wide area of organic chemistry for developing new catalytic pathways.  相似文献   

9.
We have designed a simple synthetic procedure to encapsulate colloidal gold nanoparticles by electrostatic adsorption with water-soluble poly(aniline-2-carboxylic acid). The composite nanoparticles are stable in aqueous buffer and retain the respective optical reactivity of the gold colloid to refractive index increases, and of the conductive polymer to pH changes and oxidoreduction. The new composite displays, however, significant enhancements in photonic performance when compared to the individual components, which seem to result from electronic interplay between the two materials in the hybrid structure. The enhanced photonic reactivity of the composite structure offers new opportunities for biosensing application.  相似文献   

10.
The presence of inter- and/or intra-molecular aurophilic interactions among the closed-shell gold(i) centres in various systems has been studied from various aspects, including synthetic, spectroscopic and theoretical approaches. The employment of different ligands can impose a significant influence on these factors and give rise to new complexes with interesting structural and photophysical properties. In this tutorial review, a number of recent examples are selected to illustrate the fascinating properties and chemistry, as well as versatility of gold(i) in these aspects and their potential applications to newcomers in this field. An emerging class of luminescent gold(iii) complexes is also described.  相似文献   

11.
Wirtz M  Yu S  Martin CR 《The Analyst》2002,127(7):871-879
We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially-available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared via electroless deposition of Au onto the pore walls; i.e., the pores acts as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (< 1 nm) can be prepared. These membranes are a new class of molecular sieves and can be used to separate both small molecules and proteins on the basis of molecular size. In addition, the use of these membranes in new approaches to electrochemical sensing is reviewed here. In this case, a current is forced through the nanotubes, and analyte molecules present in a contacting solution phase modulate the value of this transmembrane current.  相似文献   

12.
There is an increased interest in understanding the toxicity and rational design of gold nanoparticles (GNPs) for biomedical applications in recent years. Such efforts warrant reliable, viable, and biofriendly synthetic methodology for GNPs with homogeneous sizes and shapes, particularly sizes above 30 nm, which is currently challenging. In the present study, an environmentally benign, biofriendly, single-step/single-phase synthetic method using dextrose as a reducing and capping agent in a buffered aqueous solution at moderate temperature is introduced. The resulting GNPs are near-spherical, stable, catalytically active, place exchangeable, and water-soluble within the size range of 10-120 nm. The added advantage of the biologically friendly reaction medium employed in this new synthetic approach provides a method for the direct embedment/integration of GNPs into biological systems such as the E. coli bacterium without additional capping ligand or surface modification processes.  相似文献   

13.
When reacted in the presence of external oxidants, gold complexes are capable of catalyzing oxidative homo- and cross-coupling reactions involving the formation of new C-C bonds. Over the last few years, several cascade processes have been reported in which coupling is preceded by a gold-mediated aryl C-H functionalization or nucleophilic addition. These reactions combine the unique reactivity of gold with oxidative coupling, enabling the construction of C-C bonds between coupling partners that are not easily accessed using alternative catalysts. In this Concept paper, the development of gold-catalyzed oxidative coupling reactions is discussed focusing on C-C bond-forming reactions of broad synthetic appeal.  相似文献   

14.
Gold nanorods (AuNRs) are a particularly interesting class of nanomaterials because their dimensions and size-dependent optical properties make them ideally suited for many applications. AuNRs are typically synthesized using seeded growth approaches, in which a small spherical gold nanoparticle seed grows anisotropically into a rod-shaped particle. Using AuNRs themselves as seeds for the growth of other anisotropic shapes has been demonstrated but is relatively little-explored. In this study, we show that AuNRs grown using a common method (silver-assisted seeded growth) cannot be used as seeds in the synthesis of higher aspect ratio AuNRs. Instead, the seed AuNRs grow isotropically, providing a new synthetic approach to precisely tune the absolute dimensions of the final AuNRs. We furthermore show that the dimensions of the AuNRs are determined by the reaction conditions at very early times (<10?min), and that perturbing the growth solution beyond these times has little influence on the final AuNR properties. The observation of these behaviors may be relevant to ongoing investigations of AuNR growth mechanisms.  相似文献   

15.
Three new aliphatic thiol surfactants were synthesized by reacting alkyl bromide with hexamethyldisilathiane under a mild condition. This approach provides an easy access for the direct synthesis of various different length thiol surfactants which play a crucial role in tuning the properties of gold nanoparticles. Gold nanoparticles encapsulated with one of our synthetic thiols were prepared and well characterized by H NMR, UV-vis, FT-IR, and TEM. The hybrid nanoparticles are very stable in both organic solvents and the solid state.  相似文献   

16.
alpha-Benzyloxyallylsilane undergoes efficient [1,4]-Wittig rearrangement to generate an enolate intermediate that can be trapped with various electrophiles, thereby providing a new synthetic approach to substituted acylsilanes.  相似文献   

17.
Chalcogenide-centred gold complexes are an important class of compounds in which a central chalcogen is surrounded by several gold atoms or gold and other metals. They have special characteristics such as unusual geometries, electron deficiency and properties such as luminescence or non-linear optical properties. The best known species are the trinuclear [E(AuPR(3))(3)](+), 'oxonium' type species, that have high synthetic applicability, not only in other chalcogen-centred species, but in many other organometallic derivatives. The aurophilic interactions play an important role in the stability, preference for a particular geometry and luminescence properties in this type of derivatives (critical review, 117 references).  相似文献   

18.
We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared via electroless deposition of Au onto the pore walls; i.e., the pores act as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (<1 nm) can be prepared. These nanotube membranes can be used to cleanly separate small molecules on the basis of molecular size. Furthermore, use of these membranes as a novel electrochemical sensor is also discussed. This new sensing scheme involves applying a constant potential across the Au nanotube membrane and measuring the drop in the transmembrane current upon the addition of the analyte. This paper reviews our recent progress on size-based transport selectivity and sensor applications in this new class of membranes.  相似文献   

19.
Easily accessible benzylic esters of 3‐butynoic acids in a gold‐catalyzed cyclization/rearrangement cascade reaction provided 3‐propargyl γ‐butyrolactones with the alkene and the carbonyl group not being conjugated. Crossover experiments showed that the formation of the new C?C bond is an intermolecular process. Initially propargylic–benzylic esters were used, but alkyl‐substituted benzylic esters worked equally well. In the case of the propargylic–benzylic products, a simple treatment of the products with aluminum oxide initiated a twofold tautomerization to the allenyl‐substituted γ‐butyrolactones with conjugation of the carbonyl group, the olefin, and the allene. The synthetic sequence can be conducted stepwise or as a one‐pot cascade reaction with similar yields. Even in the presence of the gold catalyst the new allene remains intact.  相似文献   

20.
A new class of cyclometalated tetradentate alkynylgold(III) complexes has been successfully synthesized by post‐synthetic modification. Through the judicious design and choice of pincer ligands, post‐synthetic cyclization could be achieved to produce the robust and structurally rigid class of tetradentate gold(III) C^N^C^C complexes with high photoluminescence quantum yields of up to 0.49 in solution and 0.78 in doped thin films at room temperature, at least an order of magnitude higher than those of the structurally related uncyclized tridentate alkynylgold(III) analogues. High‐performance yellow to orange‐red emitting solution‐processable organic light‐emitting devices have also been achieved with external quantum efficiency of 11.1 %. This work describes for the first time of the use of post‐synthetic ligand modification approach to overcome the synthetic challenge for tetradentate alkynylgold(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号