首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the three-dimensional oxalate network structures [M(II)(bpy)3][M(I)-M(III)(ox)3] (ox= C2O4(2-); bpy = 2,2'-bipyridine) the negatively charged oxalate backbone provides perfect cavities for tris-bipyridyl complex cations. The size of the cavity can be adjusted by variation of the metal ions of the oxalate backbone. In [Co(bpy)3][NaCr(ox)3], the [Co(bpy)3]2 + complex is in its usual 4T1(t2g5e(g)2) high-spin ground state. Substituting Na+ by Li+ reduces the size of the cavity. The resulting chemical pressure destabilises the high-spin state of [Co(bpy)3]2+ to such an extent that the 2E(t2g6e(g)1) low-spin state becomes the actual ground state. As a result. [Co(bpy)3][LiCr(ox)3] becomes a spin-crossover system, as shown by temperature-dependent magnetic susceptibility measurements and single-crystal optical spectroscopy, as well as by an X-ray structure determination at 290 and 10 K.  相似文献   

2.
A tris(heteroleptic) phenanthrenequinone diimine (phi) complex of Ir(III), Ir(bpy)(phen)(phi)(3+), was synthesized through the stepwise introduction of three different bidentate ligands, and the Lambda- and Delta-enantiomers were resolved and characterized by CD spectroscopy. Like other phi complexes, this tris(heteroleptic) iridium complex binds avidly to DNA by intercalation. Electrochemical studies show that Ir(bpy)(phen)(phi)(3+) undergoes a reversible one-electron reduction at E(0) = -0.025 V in 0.1 M TBAH/DMF (versus Ag/AgCl), and spectroelectrochemical studies indicate that this reduction is centered on the phi ligand. The EPR spectrum of electrochemically generated Ir(bpy)(phen)(phi)(2+) is consistent with a phi-based radical. The electrochemistry of Ir(bpy)(phen)(phi)(3+) was also probed at a DNA-modified electrode, where a DNA binding affinity of K = 1.1 x 10(6) M(-1) was measured. In contrast to Ir(bpy)(phen)(phi)(3+) free in solution, the complex bound to DNA undergoes a concerted two-electron reduction, to form a diradical species. On the basis of UV-visible and EPR spectroscopies, it is found that disproportionation of electrochemically generated Ir(bpy)(phen)(phi)(2+) occurs upon DNA binding. These results underscore the rich redox chemistry associated with metallointercalators bound to DNA.  相似文献   

3.
The combination of two highly non-innocent ligands with a third-row transition metal produces the title complex ion which was crystallised as [Os(Q)(2)(bpy)](ClO(4))·C(6)H(6) (Q = 4,6-di-tert-butyl-o-iminobenzoquinones, bpy = 2,2(')-bipyridine) and could be structurally characterised to exhibit a tris-chelate situation at the metal with trans-positioned N and cis-positioned O donor atoms. The metrical ligand parameters are in agreement with two partially reduced ligands. A 3-spin interaction (Q˙(-))Os(III)(Q˙(-)) can rationalise the observed S = 1/2 situation with ligand-centred resulting spin. Ligand-based spin is confirmed by DFT (calculated spin populations Q: 1.113; Os: -0.113; bpy: 0.001) and is also apparent from the EPR signal (g(1) 1.981, g(2) 1.955, g(3) 1.803, Δg 0.178, ?g? 1.915) which is influenced by the high spin-orbit coupling constant of the osmium centre. The susceptibility measurements reveal antiferromagnetic behaviour. A one-electron oxidation and two one-electron reductions could be monitored spectroelectrochemically (UV-VIS-NIR) and analysed by TD-DFT, in comparison with the results from the ruthenium analogue. The analysis reflects the strong orbital mixing between the metal and the two Q-ligand MOs.  相似文献   

4.
Zheng YQ  Lin JL  Kong ZP 《Inorganic chemistry》2004,43(8):2590-2596
Reactions of 4,4'-bipyridine (bpy) with Mn(C(4)H(4)O(4)).4H(2)O and Mn(C(5)H(6)O(4)).4H(2)O in methanolic aqueous solutions yielded [Mn(bpy)(H(2)O)(C(4)H(4)O(4))].0.5bpy (1) and Mn(bpy)(C(5)H(6)O(4)) (2), respectively, and reactions of freshly prepared Mn(OH)(2)(-)(2)(x)(CO(3))(x).yH(2)O, adipic acid and 4,4'-bipyridine in a methanolic aqueous solution afforded Mn(bpy)(C(6)H(8)O(4)) (3). The six-coordinate Mn atoms in 1 are interlinked by flexible succinato ligands to form layers, which are sustained by rigid bpy ligands into an 3D open framework with the free bpy molecules in tunnels. The ribbonlike chains in 2 result from Mn atoms bridged by glutarato ligands and are connected by bpy ligands into open layers. In 3, the Mn atoms are bridged by both bpy and adipato ligands to form 3D nanoporous frameworks and 2-fold interpenetration of the resulting 3D frameworks completes the crystal structure. In comparison with 1 and 2, compound 3 displays significant antiferromagnetic behavior at low temperature. The antiferromagnetic exchange becomes stronger from 1 through 2 to 3, and the antiferromagnetic ordering of Mn(2+) centers is related to the syn-syn bridging mode of the terminal carboxylate groups of alpha,omega-dicarboxylate anions. Crystal data: C(19)H(18)MnN(3)O(5) (1), monoclinic P2(1)/c, a= 11.686(2) A, b = 17.847(2) A, c = 8.852(1) A, beta = 99.67(1) degrees, V = 1819.9(4) A(3), Z = 4, D(c) = 1.545 g.cm(-3); C(15)H(14)MnN(2)O(4) (2), triclinic P, a = 8.145(2) A, b = 9.574(2) A, c = 10.180(1) A, alpha = 108.01(3) degrees, beta = 93.55(3) degrees, gamma = 105.30(1) degrees, V = 719.2(2) A(3), Z = 2, D(c) = 1.576 g.cm(-3); C(15)H(14)MnN(2)O(4) (3), triclinic P, a = 8.544(1) A, b= 8.881(1) A, c = 10.949(2) A, alpha = 108.81(1) degrees, beta = 95.40(1) degrees, gamma = 101.94(1) degrees, V = 757.7(2) A(3), Z = 2, D(c) = 1.557 g.cm(-3).  相似文献   

5.
<正> The structure of μ-terephthalato binuclear cobalt (Ⅱ) complex CCo2(tpha)(bpy)4](ClO4)2(tpha=μ-terephthalato, bpy=2,2' -bipyridine) has been determined by X-ray method. Crystals of title complex are monoelinic, space group P21/c, with a = 13. 086(2), b = 9. 428(2), c=20. 237(4) A. β= 108. 83(1)°, Mr = 1105.61, Z = 2, Dx = 1. 55g/cm3, μ= 8. 09cm-1 and F(000)= 1128. The structure has been solved by direct methods and refined to R=0. 053, The title cation has Ct symmetry in which the terephthalato group acts as bridging ligand between the two metal atoms. Each cobalt(Ⅱ)ion is in a distorted octahedral environment. The Co.....Co distance is 10. 35A.  相似文献   

6.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

7.
The trinuclear and the tetranuclear complexes [[iPrtacnCr(CN)3]2[Ni(cyclam)]](NO3)2.5H2O 1 (cyclam = 1,4,8,11-tetraazacyclotetradecane, iPrtacn = 1,4,7-tris-isopropyl-1,4,7-triazacyclononane) and [[iPrtacnCr(CN)3Ni(Me2bpy)2]2](ClO4)4.2CH3CN 2 (Me2bpy = 4,4-dimethyl-2,2-bipyridine) were synthesized by reacting (iPrtacn)Cr(CN)3 with [Ni(cyclam)](NO3)2 and [Ni(Me2bpy)2(H2O)2](ClO4)2, respectively. The crystallographic structure of the two compounds was solved. The molecular structure of complex 1 consists of a linear Cr-Ni-Cr arrangement with a central Ni(cyclam) unit surrounded by two Cr(iPrtacn)(CN)3 molecules through bridging cyanides. Each peripheral chromium complex has two pending CN ligands. Complex 2 has a square planar arrangement with the metal ions occupying the vertices of the square. Each Cr(iPrtacn)(CN)3 molecule has two bridging and one non-bridging cyanide ligands. The magnetic properties of the two complexes were investigated by susceptibility vs. temperature and magnetization vs. field studies. As expected from the orthogonality of the magnetic orbitals between Cr(III) (t2g3) and Ni(II) (e(g)2) metal ions, a ferromagnetic exchange interaction occurs leading to a spin ground states S = 4 and 5 for 1 and 2, respectively. The magnetization vs. field studies at T = 2, 3 and 4 K showed the presence of a magnetic anisotropy within the ground spin states leading to zero-field splitting parameters obtained by fitting the data D4 = 0.36 cm(-1) and D5 = 0.19 cm(-1) (the indices 4 and 5 refer to the ground states of complexes 1 and 2, respectively). In order to quantify precisely the magnitude of the axial (D) and the rhombic (E) anisotropy parameters, High-field high frequency electron paramagnetic resonance (HF-HFEPR) experiments were carried out. The best simulation of the experimental spectra (at 190 and 285 GHz) gave the following parameters for 1: D4 = 0.312 cm(-1), E4/D4 = 0.01, g4x = 2.003, g4y = 2.017 and g4z = 2.015. For complex 2 two sets of parameters could be extracted from the EPR spectra because a doubling of the resonances were observed and assigned to the presence of complexes with slightly different structures at low temperature: D5 = 0.154 (0.13) cm(-1), E5/D5 = 0.31 (0.31) cm(-1), g4x = 2.04 (2.05), g4y = 2.05 (2.05) and g4z = 2.03 (2.02). The knowledge of the magnetic anisotropy parameters of the mononuclear Cr(iPrtacn)(CN)3, Ni(cyclam)(NCS)2 and Ni(bpy)2(NCS)2 complexes by combining HF-HFEPR studies and calculation using a software based on the angular overlap model (AOM) allowed to determine the orientation of the local D tensors of the metal ions forming the polynuclear complexes. We, subsequently, show that the anisotropy parameters of the polynuclear complexes computed from the projection of the local tensors are in excellent agreement with the experimental ones extracted from the EPR experiments.  相似文献   

8.
The complexes [M(bpy)(2)(Q)](PF(6)) (bpy = 2,2'-bipyridyl; M = Ru, Os; Q = 3,5-di-tert-butyl-N-phenyl-1,2-benzoquinonemonoimine) were isolated and studied by X and W band EPR in a dichloromethane solution at ambient temperatures and at 4 K. For M = Ru, the (14)N hyperfine splitting confirms the Ru(II)/semiquinone formulation, although at a > 1 mT, the (99,101)Ru satellite coupling is unusually high. W band EPR allowed us to determine the relatively small g anisotropy Delta g = g(1) - g(3) = 0.0665 for the ruthenium complex. The osmium analogue exhibits a much higher difference Delta g = 0.370, which is attributed not only to the larger spin-orbit coupling constant of Os versus that of Ru but also to a higher extent of metal contribution to the singly occupied molecular orbital. The difference Delta E between the oxidation and reduction potentials of the radical complexes is larger for the ruthenium compound (Delta E = 0.87 V) than for the osmium analogue (Delta E = 0.72), confirming the difference in metal/ligand interaction. The electrochemically generated states [M(bpy)(2)(Q)](n+), n = 0, 1, 2, and 3, were also characterized using UV-vis-near-infrared spectroelectrochemistry.  相似文献   

9.
《Polyhedron》2007,26(9-11):2299-2303
Variable high-frequency electron paramagnetic resonance data were collected for a single crystal of [Zn(hmp)(dmb)Cl]4 (1) doped with a small quantity of high spin Co(II), where dmb is 3,3-dimethyl-1-butanol and hmp- is the monoanion of 2-hydroxy-methylpyridine. The lack of solvent in the lattice of complex 1 results in very little disorder. Consequently, the EPR spectra are extremely sharp, enabling precise comparisons with theoretical simulations. We find the ground state of the Co(II) ions to be an effective spin S = 1/2 Kramers’ doublet with a highly anisotropic g-tensor. The anisotropy is found to be of the easy-axis type, with the single-ion easy axis directions tilted away from the crystallographic c direction by 58°.  相似文献   

10.
The synthesis and physical-chemical characterization of the metal-ligand complex [Os(bpy)2(CO)(enIA)][OTf]2 (where enIA = ethylenediamine iodoacetamide) with a sulfhydryl-specific functional group is described. The UV and visible absorption and luminescence emission, including lifetime and steady-state anisotropy, are reported for the free probe and the probe covalently linked to two test proteins. The spectroscopic properties of the probe are unaffected by chemical modification and subsequent covalent linkage to the proteins. The luminescence lifetime in aqueous buffer is approximately 200 ns and the limiting anisotropy is greater than 0.125, suggesting a potentially useful probe for biophysical investigations.  相似文献   

11.
The EPR single-crystal and powder spectra of mixed crystals of (3-chloroanilinium)(8)(Cd(1-x)Cu(x)Cl(6))Cl(4) are measured as a function of temperature and x and analyzed with respect to the geometry and bonding properties of the CuCl(6) polyhedra. These undergo strong distortions due to vibronic Jahn-Teller coupling, with the resulting tetragonal elongation being superimposed by a considerable orthorhombic symmetry component induced by a host site strain acting as a compression along the crystallographic a axis. This strain becomes apparent in the cadmium compound (x = 0), whose crystal structure is also reported [a = 8.701(2) ?, b = 13.975(2) ?, c = 14.173(2) ?, alpha = 81.62(1) degrees, beta = 72.92(1) degrees, gamma = 77.57(1) degrees, triclinic P&onemacr;, Z = 1]. A calculation of the ground state potential surface and its vibronic structure nicely reproduces the g values, Cu-Cl spacings, and ligand field data. At high copper concentrations (including x = 1), the CuCl(6) polyhedra are coupled elastically, with the long axes of neighboring polyhedra having perpendicular orientations. The elastic correlation presumably is not of the long-range antiferrodistortive type, however. Above about 55 K, the angular Jahn-Teller distortion component becomes dynamically averaged within the time scale of the EPR experiment, leading to local tetragonally compressed CuCl(6) octahedra.  相似文献   

12.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

13.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

14.
In this paper, we describe the enantiospecific synthesis and the complete characterization of the two hexacoordinated ruthenium(II) monocations [Ru(bpy)(2)ppy](+) and [Ru(bpy)(2)quo](+) (bpy = 2,2'-bipyridine, ppy = phenylpyridine-H(+), quo = 8-hydroxyquinolate) in their enantiomeric Delta and Lambda forms. The corresponding enantiomeric excesses (ee's) are determined by (1)H NMR using pure Delta-Trisphat (tris(tetrachlorobenzenedialato)phosphate(V) anion) as a chiral (1)H NMR shift reagent. A complete (1)H and (13)C NMR study has been carried out on rac-[Ru(bpy)(2)ppy]PF(6) and rac-[Ru(bpy)(2)quo]PF(6). Additionally, the X-ray molecular structure of rac-[Ru(bpy)(2)quo]PF(6) is reported; this latter species crystallizes in the monoclinic C2/c space group (a = 22.079 A, b = 16.874 A, c = 17.533 A, alpha = 90 degrees, beta = 109.08 degrees, gamma = 90 degrees ).  相似文献   

15.
王崇臣  王鹏 《化学研究》2008,19(4):9-13
用NiCl2·6H2O,2,2'-联吡啶(bpy),NH4VO3,WO3在443K下通过水热反应法得到了两种多钒酸镍配合物Ni(bpy)(H2O)(V2O6)(1)和[Ni(bpy)2]2(V6O17)(2).单晶X射线衍射结果表明化合物(1)属于正交晶系,空间群为Pcα2(1),晶胞参数为0=0.91704(18)nm,b=1.0519(2)nm,c=1.4336(3)nm,V=1.3830(5)nm^3,Z=4;化合物(2)属于单斜晶系,空间群为P2(1)/c,晶胞参数为α=1.5467(3)nm,b=1.4740(3)nm,c=1.0457(2)nm,β=91.99(3)°,V=2.3826(8)nm^3,Z=4.化合物(1)由2,2’-联吡啶修饰的二维[Ni(V2O6)(H2O)]∞电中性层构成,而化合物(2)则由2,2'-联吡啶修饰的、呈正弦波浪状的[Ni:(V6O17)]∞二维电中性层构成.  相似文献   

16.
The formation of a supercomplex between the Ru(bpy)(CN)(4)(2-) (bpy = 2,2'-bipyridine) complex and the [32]ane-N(8)H(8)(8+) macrocycle (1) has been studied in water and in acetonitrile. In acetonitrile, supercomplex formation is accompanied by (i) large hypsochromic shifts in the absorption spectrum (color changes from deep violet to yellow) and in the emission spectrum, (ii) large anodic shifts in standard oxidation (0.73 V) and reduction (0.37 V) potentials, (iii) typical shifts of (1)H-NMR signals for the macrocycle N-bound protons and the complex bipyridine protons, and (iv) a large increase in the MLCT excited-state lifetime of the complex. In water, the spectral shifts and the changes in standard potential are much less pronounced, but supercomplex formation is evidenced by (13)C-NMR (and (1)H-NMR) and by emission lifetime changes. In both solvents, supercomplex formation is complete in 1:1, 1.0 x 10(-4) M solutions, indicating very large stability constant values. A structure of the supercomplex with the macrocycle bound in a "boat" conformation to the four cyanide ligands of the complex, plausible in terms of molecular models, is consistent with all the experimental data. In water, the supercomplex further associates with added negative species containing carboxylate functions, as shown by partial reversal of the lifetime changes. When the added species is also a potential electron transfer quencher (such as, e.g., Rh(dcb)(3)(3-), dcb = 4,4'-dicarboxy-2,2'-bipyridine), however, association is not accompanied by quenching. This behavior is attributed to the structure of the supercomplex-quencher adduct, in which the macrocycle acts as an insulating spacer between the excited complex and the quencher.  相似文献   

17.
We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT).  相似文献   

18.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

19.
20.
The mer isomer of Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine) has been synthesized photochemically and isolated for the first time. The mer complex is a useful starting material for the synthesis of cis,cis-[Re(bpy)(CO)2(L)Cl]-type complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号