首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinoidal π‐conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10‐anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10‐anthryl dimer 1 has a closed‐shell ground state, whereas the tri‐ ( 2 ) and tetramers ( 3 ) both have an open‐shell diradical ground state with a small singlet–triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed‐shell quinoidal form that drives the molecule to a flexible open‐shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed‐shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain‐length dependence.  相似文献   

2.
Heterocyclic diradicaloids with atom-precise control over open-shell nature are promising materials for organic electronics and spintronics. Herein, we disclose quinoidal π-extension of a B/N-heterocycle for generating B/N-type organic diradicaloids. Two quinoidal π-extended B/N-doped polycyclic hydrocarbons that feature fusion of the B/N-heterocycle motif with the antiaromatic s-indacene or dicyclopenta[b,g]naphthalene core were synthesized. This quinoidal π-extension and B/N-heterocycle leads to their open-shell electronic nature, which stands in contrast to the multiple-resonance effect of conventional B/N-type emitters. These B/N-type diradicaloids have modulated (anti)aromaticity and enhanced diradical characters comparing with the all-carbon analogues, as well as intriguing properties, such as magnetic activities, narrow energy gaps and highly red-shifted absorptions. This study thus opens the new space for both of B/N-doped polycyclic π-systems and heterocyclic diradicaloids.  相似文献   

3.
Within the continuum of π‐extended quinoidal electronic structures exist molecules that by design can support open‐shell diradical structures. The prevailing molecular design criteria for such structures involve proaromatic nature that evolves aromaticity in open‐shell diradical resonance structures. A new diradical species built upon a quinoidal methano[10]annulene unit is synthesized and spectroscopically evaluated. The requisite intersystem crossing in the open‐shell structure is accompanied by structural reorganization from a contorted Möbius aromatic‐like shape in S0 to a more planar shape in the Hückel aromatic‐like T1. This stability was attributed to Baird’s Rule which dictates the aromaticity of 4n π‐electron triplet excited states.  相似文献   

4.
A stable 5,10‐bis(9‐fluorenylidene)porphyrin (Por‐Fl) diradicaloid was synthesized. It shows a quinoidal, saddle‐shaped geometry in the single crystal but can be thermally populated to a triplet diradical both in solution and in the solid state. Coordination with the Ni2+ ion (Por‐Fl‐Ni) does not significantly change the contorted conformation but reduces the singlet–triplet gap. Heat‐induced geometric change can explain the observed paramagnetic properties as well as unusual hysteresis in SQUID measurements. On the other hand, protonation (Por‐Fl‐2H+) dramatically changes the conformation while maintains the closed‐shell electronic structure. Our studies demonstrate how heat, coordination, and protonation affect the geometry, diradical character, and physical properties of conformationally flexible open‐shell singlet diradicaloids.  相似文献   

5.
Helicenes and extended helical π-conjugated compounds have been widely studied, but most of the systems contain only aromatic benzene or heterocyclic rings, showing local aromatic character. Herein, new S-shaped double [6]helicene 1 , which has two embedded para-quinodimethane (p-QDM) units, is reported. Due to the existence of a proaromatic quinoidal substructure, it has open-shell diradical character. Its model compound, C-shaped single [6]helicene 2 containing one p-QDM unit, was also synthesized and compared. Their ground-state structures and electronic properties were systematically studied by a combination of various experimental methods assisted by theoretical calculations. Compound 1 has a double-helical structure in the crystal, with the two terminal [6]helicene units bent in opposite directions (i.e., anti form). However, an anti/syn isomerization process with a moderate interconversion energy barrier was observed on the NMR timescale. Compound 1 shows amphoteric redox behavior. It also exhibits open-shell diradical character (y0=12.1 %) and a small singlet–triplet gap. On the other hand, compound 2 has a typical closed-shell nature. The dication and dianion of 1 also show open-shell diradical character. The dianion of 2 and the tetraanion of 1 exhibit similar electronic structures to their respective isoelectronic structures, that is, [6]helicene and a double [6]helicene. This work provides some insights into the design and synthesis of stable helical π systems with open-shell diradical character and magnetic activity.  相似文献   

6.
Extended bis(benzothia)quinodimethanes and their dications were synthesized as stable species. The neutral compounds mainly have a quinoidal structure in the ground state but show increased diradical character with extension of the central quinodimethane unit. The dications exhibit similar electronic absorption spectra, NMR spectra, NICS values, and diatropic ring currents to their aromatic all‐carbon acene analogues and thus can be regarded as genuine isoelectronic structures of pentacene, hexacene, and heptacene, respectively. Our research gave some insights into the design and synthesis of stable longer acene analogues.  相似文献   

7.
The challenging synthesis of a laterally extended heptazethrene molecule, the super‐heptazethrene derivative SHZ‐CF3 , is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ‐CF3 exhibits an open‐shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo‐terrylene SHZ‐2H was also obtained during the synthesis. This study provides a new synthetic method to access large‐size quinoidal polycyclic hydrocarbons with unique physical properties.  相似文献   

8.
A tetracyano quinoidal tetrathiophene, having a central bi(thieno[3,4‐c]pyrrole‐4,6‐dione) acceptor, has been studied. The recovered aromaticity of the thiophenes produces a diradical species with cross‐conjugation between the inter‐dicyano and inter‐dione acceptor paths. A diradical character of y0=0.61 and a singlet–triplet gap of ?2.76 kcal mol?1 were determined. Competition between the two cross‐conjugated paths enhances the disjointed character of the SOMOs and results in the confinement of the diradical to the molecular center, enabling a thermodynamic diradical stabilization featuring a half‐life of 262 hours. Cross‐conjugation effects have been also addressed in the anionic species (up to a radical trianion).  相似文献   

9.
The challenging synthesis of a laterally extended heptazethrene molecule, the super‐heptazethrene derivative SHZ‐CF3 , is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ‐CF3 exhibits an open‐shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo‐terrylene SHZ‐2H was also obtained during the synthesis. This study provides a new synthetic method to access large‐size quinoidal polycyclic hydrocarbons with unique physical properties.  相似文献   

10.
A new tetrathiafulvalene (TTF) derivative is synthesized, which is substituted with two phenoxy radicals on one 1,3-dithiole ring, and may have either open-shell diradical or closed-shell extended-quinoidal ground states. X-ray single crystal analysis and NMR measurements prove that this molecule has a closed-shell extended quinoidal structure both in the solid state and in solution. DFT calculations show the donor–acceptor electronic properties of this molecule with a well-separated HOMO–LUMO distribution and a small HOMO–LUMO energy gap. Because of this donor–acceptor character, this molecule gives both the dication and the dianion species by electrochemical oxidation and reduction. Furthermore, during the redox process between the neutral and dication states, this molecule exhibits unique changes in the cyclic voltammogram upon repeating the cycles or varying the scan rate. The observed electrochemical behavior is explained by the conformational changes in the electrochemically generated species, thus indicating that this molecule is classified as a dynamic redox system.  相似文献   

11.
Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin's hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin's hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl(3) and/or concentrated H(2)SO(4). The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm).  相似文献   

12.
The band structure and electronic properties in a series of vinylene-linked heterocyclic conducting polymers are investigated using density functional theory (DFT). In order to accurately calculate electronic band gaps, we utilize hybrid functionals with fully periodic boundary conditions to understand the effect of chemical functionalization on the electronic structure of these materials. The use of predictive first-principles calculations coupled with simple chemical arguments highlights the critical role that aromaticity plays in obtaining a low band gap polymer. Contrary to some approaches which erroneously attempt to lower the band gap by increasing the aromaticity of the polymer backbone, we show that being aromatic (or quinoidal) in itself does not ensure a low band gap. Rather, an iterative approach which destabilizes the ground state of the parent polymer toward the aromatic ? quinoidal level crossing on the potential energy surface is a more effective way of lowering the band gap in these conjugated systems. Our results highlight the use of predictive calculations guided by rational chemical intuition for designing low band gap polymers in photovoltaic materials.  相似文献   

13.
The vibrational Raman spectra of several series of aromatic and quinoidal compounds have been analyzed considering the downshifts and upshifts of the frequencies of the relevant Raman bands as a function of the number of repeating units. Oligothiophenes, oligophenylene‐vinylenes, and oligoperylenes (oligophenyls) derivatives are studied in a common context. These shifts are taken as spectroscopic fingerprints of the changes in π‐conjugation. For a given family, aromatic and quinoidal oligomers have been studied together, and according to their Raman frequency shifts located in the two‐well BLA–energy curve of their ground electronic state as a function of the bond‐length‐alternation pattern (BLA). The connection among BLA values, π‐conjugation, and Raman frequencies is taken here as the basis of the study. These Raman shifts/BLA changes have been related to important electronic properties of these one‐dimensional linear π‐electron delocalized systems such as quinoidal (polyene) and aromatic characters.  相似文献   

14.
To create a design guideline for efficient third‐order nonlinear optical (NLO) molecules, the chain‐length (n) dependences of the diradical character y and the longitudinal second hyperpolarizability γ of quinoidal oligothiophenes (QTs), from monomers to octamers, involving thiophene‐S,S‐dioxide rings are investigated by using the density functional theory method. It turns out that the diradical character of the modified QTs is reduced as compared to those of the pristine QTs. By introducing an appropriate number of oxidized rings into the QT framework, intermediate y values can be achieved even in the systems with large values of n, in which the pristine QTs are predicted to have pure diradical character. Such intermediate diradical oligomers are shown to exhibit enhanced γ values as compared to the pristine QTs with the same value for n. From the calculation results, the introduction of the optimal number of thiophene‐S,S‐dioxide rings is predicted to be an efficient chemical modification for optimizing the third‐order NLO properties of open‐shell QTs through tuning the diradical characters.  相似文献   

15.
Tuning diradical character is an important topic for organic diradicaloids. Herein, we report the precise borylation enabling structural isomerism as an effective strategy to modulate diradical character and thereby properties of organic diradicaloids. We synthesized a new B-containing polycyclic hydrocarbon that has the indeno[1,2-b]fluorene π-skeleton with the β-carbons bonding to two boron atoms. Detailed theoretical and experimental results show that this bonding pattern leads to its distinctive electronic structures and properties in comparison to that of its isomeric molecule. This molecule has the efficient conjugation between boron atoms and π-skeleton, resulting in downshifted LUMO and HOMO levels. Moreover, it exhibits smaller diradical character and thereby inhibited diradical properties, such as significantly blue-shifted light absorption, larger energy bandgap and weak para-magnetic resonance. Notably, this B-containing polycyclic hydrocarbon possesses much stronger Lewis acidity and its Lewis acid-base adducts display enhanced diradical character, demonstrating the positive effects of Lewis coordination on modulating diradical performance.  相似文献   

16.
The transformation of bipolarons into polaron pairs in long oligothiophene dications has been reported by Raman spectroscopy. These polaron-pair dicationic species possess singlet open-shell biradicaloid ground electronic states. The formation of biradical polaron pairs marks the end of the quinoidal stability promoted by the intrinsic proaromatic character. The quinoidal stability in TCNQ oligothiophenes in comparison with dicationic oligothiophenes has been addressed.  相似文献   

17.
Pentacene and its derivatives are among the most important examples of π-electron-rich molecules used in organic field effect transistors. The replacement of CH groups by nitrogen atoms opens an elegant way to generate highly electron-deficient molecules, known as oligoazaacenes. We describe the synthesis and spectroscopic properties of two novel derivatives of this family, namely the zwitterionic and quinoidal conjugated forms of dihydro-5,6,7,12,13,14-hexaazapentacene (fluorubine). We outline a powerful strategy to tune the electronic properties of these redox-active azaacenes by the selective introduction of substituted pyrazines. Their acidochromic and solvatochromic behaviour is investigated experimentally and interpreted with the help of theoretical calculations. The simple "exchange" of substituents or protonation is shown to significantly alter the spectroscopic and electronic properties of these remarkably stable π-systems. Their exceptional optical properties, such as high fluorescence quantum yields combined with a redox-active behaviour, make them promising candidates for sensor materials. Additional marked features in the solid state, such as herringbone packing in combination with short π-π distances, will open access to electronic materials.  相似文献   

18.
Organic diradicaloids have unusual open-shell nature and properties and are promising materials for organic electronics, spintronics, energy storage and nonlinear optics. In this review, we focus on indeno-type organic diradicaloids and summarize their molecular design and synthesis, as well as topological structures, open-shell characters and diradical properties. The molecular systems are classified into indenofluorenes and diindenoacenes, indeno-based molecules with one-dimensional, two-dimensional and unique topological structures, and heterocyclic indeno-based molecules. By constructing these various topological π-skeletons with tunable conjugation modes and variation of atomic composition, their key open-shell parameters, such as diradical characters and singlet-triplet energy gaps, along with the optical, electronic and magnetic properties, as well as stabilities are efficiently modulated. More attention may be paid to accurate computational analysis, rational design and synthesis, and novel functions of indeno-type diradicaloids, which will promote the development of radical chemistry and materials.  相似文献   

19.
Molecular carbons (MCs) are molecular cutouts of carbon materials. Doping with heteroatoms and constructing open-shell structures are two powerful approaches to achieve unexpected and unique properties of MCs. Herein, we disclose a new strategy to design open-shell boron-doped MCs (BMCs), namely by pentagon-fusion of an organoborane π-system. We synthesized two diradicaloid BMC molecules that feature C24B and C38B π-skeletons containing a pentagonal ring. A thorough investigation reveals that such pentagon-fusion not only leads to their local antiaromaticity, but also incorporates an internal quinoidal substructure and thereby induces open-shell singlet diradical states. Moreover, their fully fused structures enable efficient π conjugation, which is expanded over the whole frameworks. Consequently, some intriguing physical properties are achieved, such as narrow energy gaps, very broad light absorptions, and superior photothermal capability, along with excellent photostability. Notably, the solid of the C38B molecule exhibits absorption that covers the range of 300–1200 nm and an efficiency of 93.5 % for solar-driven water evaporation, thus demonstrating the potential of diradicaloid BMCs as high-performance organic photothermal materials.  相似文献   

20.
Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号