首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lam R  Mar A 《Inorganic chemistry》1996,35(24):6959-6963
The new Zintl phase dibarium tritin hexaantimonide, Ba(2)Sn(3)Sb(6) has been synthesized, and its structure has been determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group -Pnma with a = 13.351(1) ?, b = 4.4100(5) ?, c = 24.449(3) ?, and Z = 4 (T = -50 degrees C). The structure of Ba(2)Sn(3)Sb(6) comprises large channels [010] defined by 30-membered rings constructed from an anionic framework. This framework is built up from Sn-centered trigonal pyramids and tetrahedra, as well as zigzag chains of Sb atoms. Within the channels reside the Ba(2+) cations and additional isolated zigzag Sb-Sb chains. The simultaneous presence of Sn trigonal pyramids and tetrahedra implies that Ba(2)Sn(3)Sb(6) is a mixed-valence compound whose oxidation state notation can be best represented as (Ba(2+))(2)[(Sn(II))(2)(Sn(IV))(Sb(-)(III))(3)(Sb(-)(I))](2)(-)[(Sb(-)(I))(2)](2)(-).  相似文献   

2.
The salts [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, are prepared by reductive carbonylation of Pd[Pd(SO(3)F)(6)], Pt(SO(3)F)(4) or PtF(6) in liquid SbF(5), or HF-SbF(5). The resulting moisture-sensitive, colorless solids are thermally stable up to 140 degrees C (M = Pd) or 200 degrees C (M = Pt). Their thermal decompositions are studied by differential scanning calorimetry (DSC). Single crystals of both salts are suitable for an X-ray diffraction study at 180 K. Both isostructural salts crystallize in the monoclinic space group P2(1)/c (No. 14). The unit cell volume of [Pt(CO)(4)][Sb(2)F(11)](2) is smaller than that of [Pd(CO)(4)][Sb(2)F(11)](2) by about 0.4%. The cations [M(CO)(4)](2+), M = Pd, Pt, are square planar with only very slight angular and out-of-plane deviations from D(4)(h)() symmetry. The interatomic distances and bond angles for both cations are essentially identical. The [Sb(2)F(11)](-) anions in [M(CO)(4)][Sb(2)F(11)](2,) M = Pd, Pt, are not symmetry-related, and both pairs differ in their Sb-F-Sb bridge angles and their dihedral angles. There are in each salt four to five secondary interionic C- -F contacts per CO group. Of these, two contacts per CO group are significantly shorter than the sum of the van der Waals radii by 0.58 - 0.37 A. In addition, structural, and spectroscopic details of recently synthesized [Rh(CO)(4)][Al(2)Cl(7)] are reported. The cations [Rh(CO)(4)](+) and [M(CO)(4)](2+), M = Pd, Pt, are characterized by IR and Raman spectroscopy. Of the 16 vibrational modes (13 observable, 3 inactive) 10 (Pd, Pt) or 9 (Rh), respectively, are found experimentally. The vibrational assignments are supported by DFT calculations, which provide in addition to band positions also intensities of IR bands and Raman signals as well as internal force constants for the cations. (13)C NMR measurements complete the characterization of the square planar metal carbonyl cations. The extensive characterization of [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, reported here, allows a comparison to linear and octahedral [M(CO)(n)()][Sb(2)F(11)](2) salts [M = Hg (n = 2); Fe, Ru, Os (n = 6)] and their derivatives, which permit a deeper understanding of M-CO bonding in the solid state for superelectrophilic cations with [Sb(2)F(11)](-) or [SbF(6)](-) as anions.  相似文献   

3.
Li F  Sevov SC 《Inorganic chemistry》2012,51(4):2706-2708
Reported is the first rational synthesis of a trisubstituted deltahedral Zintl ion, [Ge(9){Si(SiMe(3))(3)}(3)](-) in this case, by the addition of the three substituents in a reaction of the parent naked deltahedral Zintl ion Ge(9)(4-) with {(Me(3)Si)(3)Si}Cl. The new species were crystallized and structurally characterized in [K(2,2,2-crypt)](2)[Ge(9){Si(SiMe(3))(3)}(3)] (monoclinic, P2(1)/c, a = 26.497(3) ?, b = 24.090(2) ?, c = 29.268(3) ?, β = 113.888(2)°, V = 17082(3) ?(3), Z = 8, R1/wR2 = 0.0436/0.0812 for the observed data and 0.1023/0.1010 for all data).  相似文献   

4.
Single crystals of the new transition metal Zintl phase, Ca(21)Mn(4)Sb(18), were prepared by high temperature melt synthesis. The crystal structure was determined by single crystal X-ray diffraction to be monoclinic in the space group C2/c. Crystal information was obtained at 90 K, and unit cell parameters were determined (a = 17.100(2) A, b = 17.073(2) A, c = 16.857(2) A, beta = 92.999(2) degrees, Z = 2, R1 = 0.0540, wR2 = 0.1437). The structure can be described as containing 4 discreet units per formula unit: 1 linear [Mn(4)Sb(10)](22-) anion, 2 dumbbell-shaped [Sb(2)](4-) anions, 4 individual Sb(3-) anions, and 21 Ca(2+) cations. The [Mn(4)Sb(10)](22-) anion contains four edge-shared MnSb(4) tetrahedra with distances between Mn ions of 3.388(4) A, 2.782(4) A, and 2.760(4) A. Electron counting suggests that the Mn are 2+. Temperature dependent magnetization shows a ferromagnetic-like transition temperature at approximately 52 K which is suppressed with increasing magnetic field. The paramagnetic regime is best fit to a ferrimagnetic model, providing a total effective moment of 4.04(2) mu(B), significantly less than that expected for 4 Mn(2+) ions (11.8 mu(B)). Temperature dependent resistivity shows that this compound is a semiconductor with an activation energy of 0.159(2) eV (100-300 K).  相似文献   

5.
Two new quaternary thioborates, PbSbBS(4) and PbBiBS(4), have been synthesized from solid-state reaction methods at temperatures from 1073 to 1123 K in evacuated sealed quartz tubes. The crystal structures have been determined by means of single crystal X-ray diffraction and they both crystallize in the P2(1)/m space group of the monoclinic system with a = 5.9532(18) ?, b = 6.2031(13) ?, c = 9.250(3) ?, β = 108.200(16)°, Z = 2 for PbSbBS(4) and a = 5.971(10) ?, b = 6.273(9) ?, c = 9.132(15) ?, β = 107.75(2)°, Z = 2 for PbBiBS(4), respectively. The two compounds are isostructural and both constructed with the infinite one-dimensional [MBS(4)](2-) (M = Sb or Bi) chains as building blocks, which are composed of [BS(3)](3-) trigonal plane units with [MS(3)](3-) (M = Sb or Bi) trigonal pyramids connected alternatively through corner-sharing along the crystallographic b axis. Two adjacent [MBS(4)](2-) chains are further bridged by the intermediate Pb(2+) cations, forming a novel S-shaped Pb-[MBS(4)] dimeric chain structure. In addition, first-principles electronic structure calculations based on the density functional theory (DFT) were performed on compound PbSbBS(4), indicating that the compound belongs to direct semiconductor with a band gap of 1.803 eV, which is in good agreement with the experimental value estimated from the UV-Vis diffuse reflectance spectroscopy.  相似文献   

6.
Semitransparent dark-red or ruby-red moisture- and air-sensitive single crystals of A(10+x)[Ge(9)](2)[W(1-x)Nb(x)O(4)] (A = K, Rb; x = 0, 0.35) were obtained by high-temperature solid-state reactions. The crystal structure of the compounds was determined by single-crystal X-ray diffraction experiments. They crystallize in a new structure type (P2(1)/c, Z = 4) with a = 13.908(1) ?, b = 15.909(1) ?, c = 17.383(1) ?, and β = 90.050(6)° for K(10.35(1))[Ge(9)](2)[W(0.65(1))Nb(0.35(1))O(4)]; a = 14.361(3) ?, b = 16.356(3) ?, c = 17.839(4) ?, and β = 90.01(3)° for Rb(10.35(1))[Ge(9)](2)[W(0.65(1))Nb(0.35(1))O(4)]; a = 13.8979(2) ?, b = 15.5390(3) ?, c = 17.4007(3) ?, and β = 90.188(1)° for K(10)[Ge(9)](2)WO(4); and a = 14.3230(7) ?, b = 15.9060(9) ?, c = 17.8634(9) ?, and β = 90.078(4)° for Rb(10)[Ge(9)](2)WO(4). The compounds contain discrete Ge(9)(4-) Wade's nido clusters and WO(4)(2-) (or NbO(4)(3-)) anions, which are packed according to a hierarchical atom-to-cluster replacement of the Al(2)Cu prototype and are separated by K and Rb cations, respectively. The alkali metal atoms occupy the corresponding tetrahedral sites of the Al(2)Cu prototype. The amount of the alkali metal atoms on these diamagnetic compounds corresponds directly to the amount of W substituted by Nb. Thus, the transition metals W and Nb appear with oxidation numbers +6 and +5, respectively, in the vicinity of a [Ge(9)](4-) polyanion. The crystals of the mixed salts were further characterized by Raman spectroscopy. The Raman data are in good agreement with the results from the X-ray structural analyses.  相似文献   

7.
The ternary arsenides A(2)Zn(2)As(3) and the quaternary derivatives A(2)Ag(2)ZnAs(3) (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A(2)Zn(2)As(3) crystallize with the monoclinic Ba(2)Cd(2)Sb(3)-type structure (Pearson symbol mC28, space group C2/m, Z = 4; a = 16.212(5) ?, b = 4.275(1) ?, c = 11.955(3) ?, β = 126.271(3)° for Sr(2)Zn(2)As(3); a = 16.032(4) ?, b = 4.255(1) ?, c = 11.871(3) ?, β = 126.525(3)° for Eu(2)Zn(2)As(3)) in which CaAl(2)Si(2)-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As-As bonds to form anionic slabs [Zn(2)As(3)](4-) separated by A(2+) cations. Compounds A(2)Ag(2)ZnAs(3) crystallize with the monoclinic Yb(2)Zn(3)Ge(3)-type structure (Pearson symbol mC32, space group C2/m; a = 16.759(2) ?, b = 4.4689(5) ?, c = 12.202(1) ?, β = 127.058(1)° for Sr(2)Ag(2)ZnAs(3); a = 16.427(1) ?, b = 4.4721(3) ?, c = 11.9613(7) ?, β = 126.205(1)° for Eu(2)Ag(2)ZnAs(3)), which can be regarded as a stuffed derivative of the Ba(2)Cd(2)Sb(3)-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr(2)Zn(2)As(3) is a narrow band gap semiconductor and Sr(2)Ag(2)ZnAs(3) is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr(2)Zn(2)As(3) and 0.02 eV for Eu(2)Zn(2)As(3), the latter undergoing an apparent metal-to-semiconductor transition at 25 K.  相似文献   

8.
Downie C  Mao JG  Guloy AM 《Inorganic chemistry》2001,40(18):4721-4725
Large bright-red, transparent crystalline plates of [K-(2,2)diaza-[18]-crown-6]K3Ge9-2en are obtained, in high-yield, from a reaction of (2,2)diaza-[18]-crown-6 in toluene with a solution of K4Ge9/potassium metal (K) in ethylenediamine (en). The compound crystallizes in the monoclinic space group P2(1)/m (a = 10.740(1) A, b = 15.812(1) A, c = 12.326(1) A, beta = 114.74 degrees; Z = 2). The crystal structure of [K-(2,2)diaza-[18]-crown-6]K3Ge9-2en features two-dimensional [K3Ge9] layers formed by uncomplexed K(+) cations and Ge94(-) anions. The "not-so-bare" cluster compound features a unique Ge94(-) cluster that exhibits a slightly distorted C(2v) geometry that is closer to D(3h) than the expected C(4v). Use of noncryptand sequestering agents in the isolation of Ge cluster anions from en solutions opens new avenues in understanding important cation-anion interactions in the stability and reactivity of Zintl ions, as well as a viable route to isolating Zintl anions with higher charges per atom.  相似文献   

9.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

10.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

11.
The reaction of 1:1 stoichiometries (1:1.5 for the nitrate/tetraethylene glycol (EO4) and pentaethylene glycol (EO5) complexes) of PbX(2) (X = NO(3), Br) with five- to eight-donor poly(ethylene glycols) (PEGs) in 3:1 CH(3)CN/CH(3)OH (CH(3)CN only for the nitrate/EO5 complex) followed by solvent evaporation resulted in six crystalline materials upon which X-ray structural analyses were carried out: [Pb(NO(3))(2)(EO4)](n)(), [Pb(NO(3))(2)(EO5)], [Pb(NO(3))(2)(EO6)], [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O, [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2), and [PbBr(EO7)][PbBr(3)]. The nitrates crystallize as tight ion pairs with the PEG ligands coordinating in an equatorial plane around the Pb(2+) ions. Because EO4 has only five oxygen donors, this complex exhibits steric unsaturation which is overcome by a monodentate interaction with a third nitrate anion that is also coordinated to a neighboring Pb(2+) ion. The six donors of EO5 coordinate in an equatorial plane resulting in a 10-coordinate complex with trans, twisted, bidentate nitrate anions. The seven-donor hexaethylene glycol (EO6) only uses six of its oxygen donors to coordinate Pb(2+). [Pb(NO(3))(2)(EO4)](n)() is monoclinic, P2(1)/c, with a = 7.902(3) ?, b = 22.136(6) ?, c = 8.910(2) ?, beta = 90.96(3) degrees, and Z = 4. [Pb(NO(3))(2)(EO5)] is triclinic P&onemacr;, with a = 9.332(3) ?, b = 10.025(3) ?, c = 11.688(4) ?, alpha = 68.41(3) degrees, beta = 68.39(3) degrees, gamma = 68.58(3) degrees, and Z = 2. [Pb(NO(3))(2)(EO6)] is monoclinic P2(1)/c, with a = 16.289(4) ?, b = 10.773(4) ?, c = 12.329(4) ?, beta = 106.77(2) degrees, and Z = 4. Lead(II) bromide complexes with PEGs tend to crystallize as PEG complexed cations with polymeric lead(II) bromide anions. In the EO5 complex, bromide anions in the polymer also coordinate to the PEG-wrapped Pb(2+) cations. The hexa- and heptaethylene glycol (EO6 and EO7, respectively) complexes contain discreet ions. In these halide complexes, EO7 is the only PEG to expand the Pb(2+) coordination number from eight to nine. [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O is triclinic P&onemacr;, with a = 7.922(6) ?,b = 15.802(9) ?, c = 19.001(9) ?, alpha = 73.19(8) degrees, beta = 88.91(9) degrees, gamma = 87.22(9) degrees, and Z = 4. [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2) is monoclinic P2(1)/c, with a = 14.389(4) ?, b = 31.931(9) ?, c = 8.029(2) ?, beta = 97.76(3) degrees, and Z = 2. [PbBr(EO7)][PbBr(3)] is monoclinic Cc, with a = 13.165(3) ?, b = 24.732(5) ?, c = 8.007(1) ?, beta = 94.58(2) degrees, and Z = 4.  相似文献   

12.
A new transition-metal-containing Zintl compound, Eu(10)Mn(6)Sb(13), was prepared by a high-temperature Sn-flux synthesis. The structure was determined by single-crystal X-ray diffraction. Eu(10)Mn(6)Sb(13) crystallizes in the monoclinic space group C2/m with a = 15.1791(6) A, b = 19.1919(7) A, c = 12.2679(4) A, beta = 108.078(1)*, Z = 4 (R1 = 0.0410, wR2 = 0.0920), and T = 90(2) K. The structure of Eu(10)Mn(6)Sb(13) is composed of double layers of Mn-centered tetrahedra separated by Eu(2+) cations. The double layers are composed of edge- and corner-sharing Mn-centered tetrahedra which form cavities occupied by Eu(2+) cations and [Sb(2)](4-) dumbbells. Linear [Sb(3)](5-) trimers bridging two tetrahedra across the cavity are also present. Bulk susceptibility data indicate paramagnetic behavior with a ferromagnetic component present below 60 K. Temperature-dependent electrical resistivity measurements show semiconducting behavior above 60 K (E(a)() = 0.115(2) eV), a large and unusually sharp maximum in the resistivity at approximately 40 K, and metallic behavior below 40 K. (151)Eu M?ssbauer spectra confirm that the europium is divalent with an average isomer shift of -11.2(1) mm/s at 100 K; the spectra obtained below 40 K reveal magnetic ordering of six of the seven europium sublattices and, at 4.2 K, complete ordering of the seven europium sublattices.  相似文献   

13.
The new antimonato polyoxovanadate [V(IV)(16)Sb(III)(4)O(42)(H(2)O)](8-) cluster (1a) is the main structural motif of the solvothermally obtained compound {(trenH(2))Zn(tren)}(2)[V(16)Sb(4)O(42)(H(2)O)]·xH(2)O (x = 6-10) (1) (tren = tris(2-aminoethyl)amine). The C(2)-symmetric cluster structure is closely related to the {V(18)O(42)} archetype. 1 crystallizes in the monoclinic space group C2/c with a = 30.7070(19) ?, b = 13.9512(5) ?, c = 23.1435(14) ?, β = 128.076(6)°, and V = 7804.8(7) ?(3). The orientation of the [Sb(III)(2)O(5)](4-) groups in each cluster leads to intermolecular Sb···O contacts and the formation of channels between the clusters. [Zn(tren)(trenH(2))] complexes with trigonal bipyramidal coordination environments are located between the [V(16)Sb(4)O(42)(H(2)O)](8-) anions, and form a three dimensional network with them via strong N-H···O hydrogen bonds. Up to 250 °C crystal water molecules are emitted, which are reversibly incorporated in humid air.  相似文献   

14.
Yb8Ge3Sb5 is a nonclassical Zintl phase with metallic properties arising from the electropositive "spectator" cations of Yb. This compound contains the new Zintl anion 1infinity(Ge3)4- and is stabilized via a combination of Yb2+ and Yb3+ ions.  相似文献   

15.
A new transition metal Zintl phase, Yb(9)Zn(4+x)Sb(9), was prepared by high-temperature flux syntheses as large single crystals, or by direct fusion of the corresponding elements in polycrystalline form. Its crystal structure was determined by single-crystal X-ray diffraction. Its Ca-counterpart, hitherto known as Ca(9)Zn(4)Sb(9), and the presence of nonstoichiometry in it were also studied. Yb(9)Zn(4+x)Sb(9) was found to exist in a narrow homogeneity range, as suggested from the crystallographic data at 90(3) K (orthorhombic, space group Pbam (No. 55), Z = 2): (1) a = 21.677(2) A, b = 12.3223(10) A, c = 4.5259(4) A, R1 = 3.09%, wR2 = 7.18% for Yb(9)Zn(4.23(2))Sb(9); (2) a = 21.706(2) A, b = 12.3381(13) A, c = 4.5297(5) A, R1 = 2.98%, wR2 = 5.63% for Yb(9)Zn(4.380(12))Sb(9); and (3) a = 21.700(2) A, b = 12.3400(9) A, c = 4.5339(4) A, R1 = 2.75%, wR2 = 5.65% for Yb(9)Zn(4.384(14))Sb(9). The isostructural Ca(9)Zn(4.478(8))Sb(9) has unit cell parameters a = 21.830(2) A, b = 12.4476(9) A, and c = 4.5414(3) A (R1 = 3.33%, wR2 = 5.83%). The structure type in which these compounds crystallize is related to the Ca(9)Mn(4)Bi(9) type, and can be considered an interstitially stabilized variant. Formal electron count suggests that the Yb or Ca cations are in the +2 oxidation state. This is supported by the virtually temperature-independent magnetization for Yb(9)Zn(4.5)Sb(9). Electrical resistivity data show that Yb(9)Zn(4.5)Sb(9) and Ca(9)Zn(4.5)Sb(9) are poor metals with room-temperature resistivity of 10.2 and 19.6 mOmega.cm, respectively.  相似文献   

16.
The first pentanuclear complexes of formula {Dy[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (1), {Ho[Cu(apox)][Cu(apox)(H(2)O)](3)}[PF(6)](3).4.5H(2)O (2), {Gd[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (3) and {Gd[Cu(apox)][Cu(apox) (H(2)O)](3)}[PF(6)](3).4.5H(2)O (4) (H(2)apox = N,N'-bis(3-aminopropyl)oxamide) have been synthesized. The crystal structures of complexes 1 and 2 have been determined by X-ray diffraction methods. Complexes 3 and 4 are isostructural with 1 and 2, respectively. Crystallographic data are as follows: 1 and 3, monoclinic, space group C2/c and Z = 4, with a = 14.646(6) ?, b = 29.496(7) ?, c = 16.002(7) ?, and beta = 111.76(2) degrees for 1 and a = 14.523(6) ?, b = 29.441(6) ?, c = 15.925(8) ?, and beta = 111.90(4) degrees for 3; 2 and 4, triclinic, P&onemacr;, and Z = 2, with a = 14.346(2) ?, b = 14.454(2) ?, c = 18.107(4) ?, alpha = 90.95(2) degrees, beta = 110.75(2) degrees, and gamma = 106.77(2) degrees for 2 and a = 14.365(6) ?, b = 14.496(5) ?, c = 18.172(7) ?, alpha = 91.27(3) degrees, beta = 110.74(3) degrees, and gamma = 106.67(3) degrees for 4. A tripositive ion is present in these structures, the electroneutrality being achieved by three uncoordinated perchlorate (1) or hexafluorophosphate (2) anions. The lanthanide cations are eight-coordinate with a pseudo-square-antiprismatic environment formed by carbonyl oxygen atoms from two [Cu(apox)] and two Cu(apox)(H(2)O)] (1) and one [Cu(apox)] and three [Cu(apox)(H(2)O)] (2) bidentate ligands. The temperature dependence of the magnetic susceptibility of complexes 1-4 was investigated in the range 1.8-300 K. The ligand-field effect, as well as the mixing of the free-ion states in Dy(III) and Ho(III), make extremely difficult the analysis of the overall antiferromagnetic interaction which is observed for complexes 1 and 2. The magnetic susceptibility data for complexes 3 and 4 have shown that the ground-state spin for the [Gd(III)Cu(II)(4)] unit is S = 11/2, the Gd(III)-Cu(II) interaction being ferromagnetic with an interaction parameter J(GdCu) = 0.85 cm(-)(1) (the interaction Hamiltonian is of the form H = -JS(A).S(B)). The field dependence of the magnetization at 2 K of 3 and 4 confirms the nature of the ground state and of the Gd(III)-Cu(II) interaction. The influence of the topology and of the type of bridging ligand on the nature and magnitude of the magnetic interaction in the Gd(III)-Cu(II) pair is analyzed and discussed in light of available magnetostructural data.  相似文献   

17.
(H(3)O)(2)[V(4)(HPO(4))(PO(4))(3)O(6)F](2)[NC(7)H(14)](6) (labeled ULM-17) has been hydrothermally synthesized (150 degrees, 24 h, autogeneous pressure). It is monoclinic (space group P2(1)/c (No. 14)) with a = 21.4747(6) ?, b = 17.7223(5) ?, c = 20.1616(6) ?, beta = 94.329(1) degrees, and Z = 4. The structure consists in the hexagonal close packing of discrete hydronium cations, protonated quinuclidine and molecular anions [V(4)(HPO(4))(PO(4))(3)O(6)F](4)(-) (1) The structure presents two kinds of octameric anions built up from the tetrahedral arrangement of V(V)O(5)F octahedra sharing edges and vertices, capped by phosphorus tetrahedra. The stability of the solid is ensured via strong hydrogen bonds between the oxygens of the polyanions and the hydrogens of both hydronium and quinuclidinium cations. The particuliar location of fluorine at the center of the molecular anion 4-fold coordinated by V(V) was studied by solid state NMR.  相似文献   

18.
La(OSO(2)CF(3))(3) reacts with 4 equiv of LiP(t)Bu(2) in tetrahydrofuran to give dark red ((t)Bu(2)P)(2)La[(&mgr;-P(t)Bu(2))(2)Li(thf)] (1). Yb(OSO(2)CF(3))(3) reacts with LiP(t)Bu(2) in tetrahydrofuran in a 1:5 ratio to produce Yb[(&mgr;-P(t)Bu(2))(2)Li(thf)](2) (2) and 1/2 an equiv of (t)Bu(2)P-P(t)Bu(2). Both 1 and 2 crystallize in the monoclinic space group P2(1)/c. Crystal data for 1 at 214 K: a = 11.562 (1) ?, b = 15.914 (1) ?, c = 25.373 (3) ?, beta = 92.40 (1) degrees; V = 4664.5 ?(3); Z = 4; D(calcd) = 1.137 g cm(-)(3); R(F)() = 2.61%. Crystal data for 2 at 217 K: a = 21.641 (2) ?, b = 12.189 (1) ?, c = 20.485 (2) ?, beta = 109.01 (1) degrees; V = 5108.9 ?(3); Z = 4; D(calcd) = 1.185 g cm(-)(3); R(F)() = 2.80%. The molecular structures of 1 and 2 show the four-coordinate lanthanide atoms in distorted tetrahedral environments. These complexes are the first representatives of the lanthanide elements surrounded by four only-phosphorus-containing substituents. The main features of the crystal structure of 1 are the shortest La-P distances (2.857(1) and 2.861(1) ?) reported so far and a three-coordinate lithium cation. The molecular structure of 2 represents a divalent bis "ate" complex with two three-coordinate lithium cations. Complex 2 shows photoluminescent properties. VT NMR spectra ((7)Li and (31)P) are reported for 1and 2.  相似文献   

19.
As the first examples of homoleptic, sigma-bonded superelectrophilic metal carbonyl cations with tetrafluoroborate [BF(4)](-) as the counter anions three thermally stable salts of the composition [M(CO)(6)][BF(4)](2) (M = Fe, Ru, Os) have been synthesized and extensively characterized by thermochemical, structural, and spectroscopic methods. A common synthetic route, the oxidative carbonylation of either Fe(CO)(5) (XeF(2) as the oxidizer) or M(3)(CO)(12) (M = Ru, Os) (F(2) as the oxidizer) in the conjugate Bronsted-Lewis superacid HF/BF(3), was employed. The thermal behavior of the three salts, studied by differential scanning calorimetry (DSC) and gas-phase IR spectroscopy of the decomposition products, has been compared to that of the corresponding [SbF(6)](-) salts. The molecular structures of [M(CO)(6)][BF(4)](2) (M = Fe, Os) were obtained by single-crystal X-ray diffraction at 100 K. X-ray powder diffraction data for [M(CO)(6)][BF(4)](2) (M = Ru, Os) were obtained between 100 and 300 K in intervals of 50 K. All three salts are isostructural and crystallized in the tetragonal space group I4/m (No. 87). As for the corresponding [M(CO)(6)][SbF(6)](2) salts (M = Fe, Ru, Os), similar unit cell parameters and vibrational fundamentals were also found for the three [BF(4)](-) compounds. For the structurally characterized salts [M(CO)(6)][BF(4)](2) (M = Fe, Os), very similar bond parameters for both cations and anions were found. Hence, the invariance of structural and spectroscopic properties of [M(CO)(6)](2+) cations (M = Fe, Ru, Os) extended from the fluoroantimonates [Sb(2)F(11)](-) and [SbF(6)](-) as counteranions also to [BF(4)](-).  相似文献   

20.
The first two transition metal compounds incorporating triazole-nitronyl-nitroxide radicals as ligands have been synthesized. These compounds are [Cu(4-Me-3-Nit-trz)(4)](ClO(4))(2) (1) and [Ni(4-Me-3-Nit-trz)(4)](ClO(4))(2) (2) with 4-Me-3-Nit-trz = 2-(3-[4-methyl-1,2,4-triazolyl])-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide. Compound 1 crystallizes in the triclinic system, space group P&onemacr;. The lattice parameters are a = 9.742(2) ?, b = 12.214(12) ?, c = 12.981(4) ?, alpha = 67.19(4) degrees, beta = 81.48(2) degrees, and gamma = 79.24(4) degrees, with Z = 1. The structure consists of centrosymmetrical [Cu(4-Me-3-Nit-trz)(4)]](2+)cations and noncoordinated perchlorate anions. The Cu(II) ion is in an N(4)O(2) elongated tetragonal environment with two oxygen atoms of two nitroxide groups occupying the apical positions. Within the lattice the cations form infinite chains with short intermolecular contacts involving the nitronyl-nitroxide moieties of two adjacents cations. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization at 2 K have been investigated. Both intermolecular antiferromagnetic and intramolecular ferromagnetic interactions are operative. A theoretical model has been developed to interpret quantitatively the magnetic data, which allows us to determine the values of the interaction parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号