首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An almost orthogonal comprehensive two-dimensional liquid chromatography was developed for the separation of phenolic and flavone natural antioxidants by using combinations of a polyethylene glycol silica micro-column in the first dimension and a porous-shell fused-core C18 column in the second dimension, both in the reversed-phase mode. System orthogonality was improved using parallel gradients of acetonitrile in buffered mobile phase. A new approach was proposed to optimize matching segmented gradient profiles in the two dimensions. An algorithm was developed for automatic corrections of the shifts in retention in the second dimension induced by the parallel two-dimensional gradient operation technique. Using the porous-shell C18 column in the second dimension at elevated temperature (60 degrees C) and high pressure (480 bar) with optimized segmented profiles of the parallel gradients in the two dimensions, the overall separation time for comprehensive LC x LC was reduced to 30 min.  相似文献   

2.
Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high‐molecular‐weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one‐dimensional liquid chromatography, two‐dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two‐dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two‐dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two‐dimensional liquid chromatography separations.  相似文献   

3.
Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions and therefore should be used in comprehensive two-dimensional LC×LC, both in the first and in the second dimension, where, however, gradients are limited to a short time period available for separation, usually 1 min or less. Gradient conditions spanning over a broad mobile phase composition range in each second-dimension fraction analysis are used with generic "full in fraction" (FIF) gradients. "Segment in fraction" (SIF) gradients cover a limited gradient range adjusted independently to suit changing lipophilicity range of compounds transferred to the second dimension during the first-dimension gradient run and to provide regular coverage of the two-dimensional retention space. Optimization of the gradient profiles is important tool for achieving high two-dimensional peak capacity and savings of the separation time in comprehensive LC×LC. Calculations based on the well-established gradient-elution theory can be used to predict the elution times and bandwidths in fast gradients, taking into account increased probability of pre-gradient or post-gradient elution. The fraction volumes transferred into the second dimension may significantly affect the second-dimension bandwidths, especially at high elution strength of the fraction solvent, which may cause even band distortion or splitting in combined normal-phase (HILIC)-RP systems, but also in some two-dimensional RP-RP systems. In the present work, the effects of the fast gradient profile, of the sample volume and solvent on the elution time and bandwidths were investigated on a short column packed with fused-core porous-shell particles, providing narrow bandwidths and fast separations at moderate operating pressure.  相似文献   

4.
Anthocyanins are water‐soluble pigments that are liable for colors ranging from red to blue of most fruits, vegetables, and flowers. A novel and fast method was developed for the determination of five anthocyanins and free pelargonidin by high‐performance liquid chromatography coupled to photodiode array detection. A 10% formic acid and acetonitrile mixture was employed as mobile phase in the gradient elution mode. Mobile phase composition, column temperature, flow rate, injection volume, and column conditioning time were optimized by employing a stepwise strategy. Using a C18 core–shell column (100 × 4.6 mm, 2.7 μm), the separation of six analytes was accomplished in less than 9.5 min with a run‐to‐run analysis time of 19 min. The developed method was validated with respect to linearity (r > 0.9999), limit of detection, limit of quantification, intra‐/interday precision (<2%), accuracy (98.6–104.4%), and specificity. Afterwards, the method was applied to the determination of anthocyanins present in 15 different samples including fruits, fruit juices, and fruit wines.  相似文献   

5.
6.
We have developed a fully automatable two-dimensional liquid chromatography platform for shotgun proteomics analyses based on the online coupling of hydrophilic interaction liquid chromatography (HILIC) - using a nonionic type of TSKgel Amide 80 at either pH 6.8 (neutral) or 2.7 (acidic) - with conventional low-pH reversed-phase chromatography. Online coupling of the neutral-pH HILIC and reversed phase chromatography systems outperformed the acidic HILIC-reversed phase chromatography combination, resulting in 18.4% (1914 versus 1617 nonredundant proteins) and 41.6% (12,989 versus 9172 unique peptides) increases in the number of identified peptides and proteins from duplicate analyses of Rat pheochromocytoma lysates. Armed with this optimized HILIC-reversed phase liquid chromatography platform, we identified 2554 nonredundant proteins from duplicate analyses of a Saccharomyces cerevisiae lysate, with the detected protein abundances spanning from approximately 41 to 10(6) copies per cell, which contained up to approximately 2092 different validated protein species with a dynamic range of concentrations of up to approximately 10(4) . This present study establishes a fully automated platform as a promising methodology to enable online coupling of different hydrophilic HILIC and reversed phase chromatography systems, thereby expanding the repertoire of multidimensional liquid chromatography for shotgun proteomics.  相似文献   

7.
The application of high temperature comprehensive two-dimensional (2D) liquid chromatography for quantitative characterization of chemical composition and molecular weight (MW) heterogeneities in polyolefins is demonstrated in this study by separating a physical blend of isotactic-polypropylene, ethylene-random-propylene copolymer, and high density polyethylene. The first dimension separation is based on adsorption liquid chromatography that fractionates the blend from low to high ethylene content. The second dimension is size-exclusion chromatography connected with light scattering (LS) and infrared (IR) detectors. The IR detector shows desired sensitivity and linearity for monitoring analyte concentrations in the eluent after 2D separations. In addition, the compositions of the analytes are also determined from the ratio of two IR absorbances at the specified wavelength regions, an absorbance for measuring the level of methyl groups in polyolefins and another absorbance for measuring concentration. The LS detector is used to determine absolute molecular weight of the analytes from the ratio of the light scattering signal to the IR concentration signal. The ability to obtain concentration, chemical composition, and MW of polyolefins after 2D separation provides new opportunities to discover structure-property relationships for polyolefins with complex structures/architectures.  相似文献   

8.
We prepared 0.53 and 0.32 mm id monolithic microcolumns by in situ copolymerization of a zwitterionic sulfobetaine functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) and dioxyethylene dimetacrylate crosslinkers. The columns show a dual retention mechanism (hydrophilic‐interaction mode) in acetonitrile‐rich mobile phases and RP in highly aqueous mobile phases. The new 0.53 mm id columns provided excellent reproducibility, retention, and separation selectivity for phenolic acids and flavonoids. The new zwitterionic monolithic columns are highly orthogonal, with respect to alkyl silica stationary phases, not only in the hydrophilic‐interaction mode but also in the RP mode. The optimized monolithic zwitterionic microcolumn of 0.53 mm id was employed in the first dimension, either in the aqueous normal‐phase or in the RP mode, coupled with a short nonpolar core‐shell column in the second dimension, for comprehensive 2D LC separations of phenolic and flavonoid compounds. When the 2D setup with the sulfobetaine–BIGDMA column was used for repeated sample analysis, with alternating gradients of decreasing (hydrophilic‐interaction mode), and increasing (RP mode) concentration of acetonitrile on the sulfobetaine–BIGDMA column in the first dimension, useful complementary information on the sample could be obtained.  相似文献   

9.
Two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography (2D-RPLC/HILIC) system was successfully applied for comprehensive characterization of steviol glycosides from Stevia rebaudiana. The experiments were performed in offline mode using an XCharge C18 column in first dimension and an XAmide column in second dimension. In first dimension, preliminary separation of Stevia aqueous extract was accomplished and 30 fractions were collected. Then fractions 1-20 were selected for further purification and 13 compounds with high purity were obtained in second dimension. Comprehensive characterization of these compounds was completed by determination of their retention time, accurate molecular weight, diagnostic fragmentation ions, and nuclear magnetic resonance spectroscopy. As a result, all nine known steviol glycosides, as well as other four steviol glycosides were fully purified. The result demonstrated that this procedure is an effective approach for the preparative separation and comprehensive characterization of steviol glycosides in Stevia. This 2D-RPLC/HILIC method will be a promising tool for the purification of low-abundance compounds from natural products.  相似文献   

10.
Solvent compatibility is a limiting factor for the success of two-dimensional liquid chromatography (2-D LC). In the second dimension, solvent effects can result in overpressures as well as in peak broadening or even distortion. A peak shape study was performed on a one-dimensional high-performance liquid chromatography (HPLC) system to simulate the impact of peak distorting solvent effects on a reversed-phase second dimension separation operated at high temperatures. This study includes changes in injection volume, solute concentration, column inner diameter, eluent composition and oven temperature. Special attention was given to the influence of high temperatures on the solvent effects. High-temperature HPLC (HT-HPLC) is known to enhance second dimension separations in terms of speed, selectivity and solvent compatibility. The ability to minimise the viscosity contrast between the mobile phases of both dimensions makes HT-HPLC a promising tool to avoid viscosity mismatch effects like (pre-)viscous fingering. In case of our study, viscosity mismatch effects could not be observed. However, our results clearly show that the enhancement in solvent compatibility provided by the application of high temperatures does not include the elimination of solvent strength effects. The additional peak broadening and distortion caused by this effect is a potential error source for data processing in 2-D LC.  相似文献   

11.
Yang X  Zhang X  Li A  Zhu S  Huang Y 《Electrophoresis》2003,24(9):1451-1457
A novel comprehensive two-dimensional (2-D) separation system coupling capillary high-performance liquid chromatography (cHPLC) with microchip electrophoresis (chip CE) is demonstrated. Reversed-phase cHPLC was used as the first dimension, and chip CE acted as the second dimension to perform fast sample transfers and separations. A valve-free gating interface was devised simply by inserting the outlet-end of LC column into the cross-channel on a specially designed chip. A home-made confocal laser-induced fluorescence detector was used to perform on-chip high-sensitive detection. The cHPLC effluents were continuously delivered to the chip and pinched injections of the effluents every 20 seconds were employed for chip CE separation. Gradient elution of cHPLC was carried out to obtain the high-efficiency separation. Free-zone electrophoresis was performed with triethylamine buffer to achieve high-speed separation and prevent sample adsorption. Such a simple-made comprehensive system was proved to be effective. The relative standard deviations for migration time and peak height of rhodamine B in 150 sample transfers were 3.2% and 9.8%, respectively. Peptides of the fluorescein isothiocyanate (FITC)-labeled tryptic digests of bovine serum albumin were fairly resolved and detected with this comprehensive 2-D system.  相似文献   

12.
On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization of two-dimensional liquid chromatography is a relatively new yet important research topic the aim of which is to predict combinations of stationary and mobile phases, column formats, and chromatographic conditions that maximize resolving power and minimize analysis time. In on-line two-dimensional liquid chromatography, dilution-related issues play also an important role and these should be taken into account when developing optimization strategies. In this work, state-of-the-art strategies that support method development for on-line two-dimensional liquid chromatography through a rigorous choice of chromatographic parameters are critically reviewed. The final aim is to provide practitioners with a clear understanding of which aspects can be optimized using current on-line two-dimensional liquid chromatography strategies (and which ones cannot). In two-dimensional liquid chromatography, maximizing resolving power for a given analysis time and dilution requires optimizing efficiency, selectivity and retention. While great strides forward have been made in the optimization of efficiency-related issues, considerable effort needs still to be made in terms of (1) developing models that can predict the retention factors that given stationary/mobile phase systems can provide and (2) using this information for choosing the two ones that maximize two-dimensional liquid chromatography orthogonality. Because of this limitation, in two-dimensional liquid chromatography, this aspect is typically dealt with a posteriori through examining chromatograms. This review clearly shows that important progress in the optimization of on-line two-dimensional liquid chromatography has recently been made.  相似文献   

13.
I. M. Mutton 《Chromatographia》1998,47(5-6):291-298
Summary Rapid analyses were performed using reversed-phase liquid chromatography with short (20–100 mm) columns swept by fast yet shallow gradients, and the results compared with those obtained with 150 mm columns and slow gradients. The resolution losses incurred with shorter columns were minimised by employing elevated flow rates, to ensure that comparable mean retention factors were experienced by individual analytes during gradients run on different columns. This conserves gradient steepness. High quality performance was obtained with turn-around times of 5–10 minutes. An overall 5-fold enhancement in the rate of information generation was obtained. The relevance of instrumental parameters and of column and packing dimensions, upon the potential for improved performance is discussed. Some implications for the rapidly developing technique of capillary electrochromatography are briefly indicated.  相似文献   

14.
A novel comprehensive two-dimensional liquid chromatographic (LC×LC) system was developed for the quantification of antioxidant phenolic compounds in wine and juice. The system allows parts of the sample that are well separated in the first column to pass directly to the detector after the first column, while the rest of the sample proceeds to the second column. The optimised LC×LC system employed a combination of two C18 columns, the latter column with an ion-pair reagent (tetrapentylammonium bromide). The relative standard deviations (RSD) for the retention times were better than 0.01% in the first dimension and on average 6.3% in the second. The RSD values of the peak volumes varied from 3% (protocatechuic acid) to 13% (caffeic acid, n = 3, 10 μg/ml).  相似文献   

15.
This study explores the application of specific thermionic ionisation detection in comprehensive 2-D GC (GC x GC) and represents the first report of GC x GC with nitrogen phosphorus detection (GC x GC-NPD). Of particular interest is the performance of the NPD with respect to peak parameters of asymmetry and sensitivity. Since GC x GC produces much narrower peaks than obtained with fast GC (e.g. 100 ms vs. <1 s) the effect of detector response time and any lack of symmetry arising from the detection step is important if peak separation (resolution) is to be maintained. It was observed that detector gas flows had a significant impact on peak asymmetry and peak magnitude, and that optimisation of the detector was critical, particularly for complex sample analysis by GC x GC-NPD. Peak asymmetries ranging from As = 1.8 to 8.0 were observed under different conditions of detector gas flows. Comparison of GC x GC-NPD with GC x GC-flame ionisation detection (FID) showed the former to be approximately 20 times more sensitive for the detection of nitrogen-containing methoxypyrazines analytes, and GC x GC-NPD had a larger linear detection range compared to GC x GC-FID. Furthermore, comparison of GC x GC-NPD and GC x GC-TOFMS chromatograms for the analysis of coffee head-space demonstrated the benefits of selective detection, ultimately realised in a comparatively simplified contour plot.  相似文献   

16.
The linear solvent strength model was used to predict coverage in online comprehensive two‐dimensional reversed‐phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo‐compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0–25, was tested by varying input parameters, and was found to be acceptable with root mean square errors of 3. The accuracy of the prediction was assessed by comparing with the experimental coverages. Less than half of experimental coverages were outside prediction ± 1 × root mean square error and none outside prediction ± 2 × root mean square error. Accuracy was lower when retention factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two‐dimensional liquid chromatography, as it mitigates the tedious registration and modeling of all sample constituents, a circumstance that is particularly appealing when dealing with complex samples.  相似文献   

17.
In this work we develop a practical approach to optimization in comprehensive two dimensional liquid chromatography (LC x LC) which incorporates the important under-sampling correction and is based on the previously developed gradient implementation of the Poppe approach to optimizing peak capacity. The Poppe method allows the determination of the column length, flow rate as well as initial and final eluent compositions that maximize the peak capacity at a given gradient time. It was assumed that gradient elution is applied in both dimensions and that various practical constraints are imposed on both the initial and final mobile phase composition in the first dimension separation. It was convenient to consider four different classes of solute sets differing in their retention properties. The major finding of this study is that the under-sampling effect is very important and causes some unexpected results including the important counter-intuitive observation that under certain conditions the optimum effective LC x LC peak capacity is obtained when the first dimension is deliberately run under sub-optimal conditions. In addition, we found that the optimum sampling rate in this study is rather slower than reported in previous studies and that it increases with longer first dimension gradient times.  相似文献   

18.
二维液相色谱接口的改进及其在蛋白质组学研究中的应用   总被引:1,自引:0,他引:1  
李笃信  张凌怡  李彤  杜一平  张维冰 《色谱》2010,28(2):163-167
随着蛋白质组学、本草物质组学等组学概念的提出,所需分析的样品的成分越来越复杂,因此具有强大分离能力的多维液相色谱技术受到人们越来越多的关注。二维液相色谱中第二维的分离性能和速度是整个分离系统性能的关键。基于捕集柱模式,我们采用经特殊设计的流路系统,使得双捕集柱型接口具有预分离的功能。样品从第一维流出以后被富集在捕集柱1的柱头,经过脱盐后,正冲捕集柱,捕集柱1与第二维色谱柱联用对富集的样品进行分离,增加了第二维分离效率。当捕集柱上的样品全部被洗脱到第二维色谱柱上时,捕集柱2已经完成对第一维洗脱液中样品的捕集和脱盐,此时将阀进行切换,捕集柱2与第二维色谱柱直接相连进行洗脱。循环切换捕集柱1和捕集柱2,维持较高的阀切换频率,实现了第二维色谱柱的连续洗脱。因此保证了第二维分离具有较快速度,同时具有较高的分离效率。使用35 mm长捕集柱和十通阀为接口,以弱阴离子交换(WAX)色谱为第一维分离模式,以反相(RP)色谱为第二维分离模式,构建了WAX-RP二维液相色谱系统(2D-LC system)。以小鼠血清为样品对系统进行了初步评价。色谱流出曲线出现了明显的界面现象,这是由于捕集柱流动相中含有的较多盐分流出时的背景吸收造成的。同时,由于界面两侧的流动相黏度不同产生了黏性指进(VF)现象。当第二维色谱柱长度为50 mm时,理论上可将第二维分离效能提高70%。该接口可以应用于多种二维液相色谱模式,适用于蛋白质组学和本草物质组学研究中对于复杂样品的分离分析。  相似文献   

19.
The dried flower buds of Magnolia biondii Pamp are one of the most widely used medicinal plants officially listed in the Chinese Pharmacopoeia. A 2-D column-switching system without sample loop trapping, where two columns were switched directly via a six-port two-position switching valve, was successfully applied for the first time to the isolation and purification of five lignans including pinoresinol dimethyl ether, magnolin, epi-magnolin A, fargesin, and demethoxyaschantin from M. biondii Pamp after microwave-assisted extraction. The introduction of the six-port switching valve instead of sample loop assured 100% recovery from the first dimension to the second, and the injection volumes of the second dimension could reach 12 mL. In this mode of operation, the solvent consumption of the 2-D approach was less than 30% that of conventional gradient methods with even larger sample size. The simultaneous operations of the two dimensions allowed the cycle time to be less than 16 min, compared to 90 min in the gradient elution single-dimension mode of operation. All of the five lignans were isolated at high purities of over 99% with approximately 95% recoveries.  相似文献   

20.
In this study, an improved online comprehensive two‐dimensional liquid chromatography platform coupled to tandem mass spectrometry was developed for the analysis of complex polyphenolic samples. A narrowbore hydrophilic interaction chromatography column (150 × 2.0 mm, 3.0 μm, cross‐linked diol) was employed in the first dimension, while a reversed‐phase column based on monodisperse sub‐2 μm fully porous particles (50 × 3.0 mm, 1.9 μm d.p.) with high surface area (410 m2/g) was employed in the second dimension. The combination of a trapping column modulation interface with the high retentive fully porous monodisperse reversed‐phase column in the second dimension resulted in higher peak capacity values (1146 versus 867), increased sensitivity, sharper and more symmetrical peaks in comparison with a conventional loop‐based method, with the same analysis time (70 min). The system was challenged against a complex polyphenolic extract of a typical Italian apple cultivar, enabling the simultaneous separation of multiple polyphenolic classes, including oligomeric procyanidins, up to degree of polymerization of 10. Hyphenation with an ion trap time‐of‐flight mass spectrometer led to the tentative identification of 121 analytes, showing how this platform could be a powerful analytical tool for the accurate profiling of complex polyphenolic samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号