首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the non-linear forced vibrations of a thermally loaded annular plate with clamped–clamped immovable boundary conditions in the presence of a three-to-one internal resonance between the first and second axisymmetric modes. We consider the in-plane thermal load to be axisymmetric and excite the plate externally by a harmonic force near primary resonance of the second mode. We then use the non-linear von Kármán plate equations to model the behavior of the system and apply the method of multiple scales to investigate its responses. We found that the response can be periodic oscillations consisting of both modes, with a large component from the first mode. Moreover, the periodic solutions may undergo Hopf bifurcations, which lead to aperiodic oscillations of the plate.  相似文献   

2.
Nonlinear dynamic of composite stiffened panels to parametric and three-to-one internal resonances is investigated. The ordinary differential equation of two mode shapes is established by using Galerkin method and the condition of three-to-one internal resonance between the first mode (1,3) and the second mode (3,1) is examined near the principal resonance 2:1 of the first mode. Then, the nonlinear behavior of the two buckling mode shapes is analyzed using a perturbation analysis. We show the existence of jump phenomena for the two modes indicating a complex dynamic of the structure near the three-to-one internal resonance for the HM Graphite/epoxy materials.  相似文献   

3.
Nonlinear modal interactions in the forced vibrations of a thermally loaded pre-buckled annular plate with clamped–clamped immovable boundary conditions are investigated. The mechanism responsible for the interaction is a combination internal resonance involving the natural frequencies of the three lowest axisymmetric modes. The in-plane thermal load acting on the plate is assumed to be axisymmetric and the plate is externally excited by a harmonic force. The nonlinear von Kármán plate equations along with the heat conduction equation are combined to model the behavior of the system. An analytical/numerical approach is used to examine the plate vibrations to a harmonic excitation near primary resonance of one of the modes.  相似文献   

4.
Three-to-One Internal Resonances in Hinged-Clamped Beams   总被引:7,自引:0,他引:7  
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1997,12(2):129-154
The nonlinear planar response of a hinged-clamped beam to a primary excitation of either its first mode or its second mode is investigated. The analysis accounts for mid-plane stretching, a static axial load and a restraining spring at one end, and modal damping. For a range of axial loads, the second natural frequency is approximately three times the first natural frequency and hence the first and second modes may interact due to a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear partial-differential equation and derive two sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the case of primary resonance of either the first or the second mode. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of primary resonance of the first mode, only two-mode solutions are possible, whereas for the case of primary resonance of the second mode, single- and two-mode solutions are possible. The two-mode equilibrium solutions of the modulation equations may undergo a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. A shooting technique is used to calculate limit cycles of the modulation equations and Floquet theory is used to ascertain their stability. The limit cycles correspond to periodically modulated motions of the beam. The limit cycles are found to undergo cyclic-fold bifurcations and period-doubling bifurcations, leading to chaos. The chaotic attractors may undergo boundary crises, resulting in the destruction of the chaotic attractors and their basins of attraction.  相似文献   

5.
Nonlinear normal modes of a fixed-fixed buckled beam about its first post-buckling configuration are investigated. The cases of three-to-one and one-to-one internal resonances are analyzed. Approximate solutions for the nonlinear normal modes are computed by applying the method of multiple scales directly to the governing integral-partial-differential equation and associated boundary conditions. Curves displaying variation of the amplitude of one of the modes with the internal-resonance-detuning parameter are generated. It is shown that, for a three-to-one internal resonance between the first and third modes, the beam may possess one stable uncoupled mode (high-frequency mode) and either (a) one stable coupled mode, (b) three stable coupled modes, or (c) two stable and one unstable coupled modes. For the same resonance, the beam possesses one degenerate mode (with a multiplicity of two) and two stable and one unstable coupled modes. On the other hand, for a one-to-one internal resonance between the first and second modes, the beam possesses (a) two stable uncoupled modes and two stable and two unstable coupled modes; (b) one stable and one unstable uncoupled modes and two stable and two unstable coupled modes; and (c) two stable uncoupled and two unstable coupled modes (with a multiplicity of two). For a one-to-one internal resonance between the third and fourth modes, the beam possesses (a) two stable uncoupled modes and four stable coupled modes; (b) one stable and one unstable uncoupled modes and four stable coupled modes; (c) two unstable uncoupled modes and four stable coupled modes; and (d) two stable uncoupled modes and two stable coupled modes (each with a multiplicity of two).  相似文献   

6.
The nonlinear response of a water-filled, thin circular cylindrical shell, simply supported at the edges, to multi-harmonic excitation is studied. The shell has opportune dimensions so that the natural frequencies of the two modes (driven and companion) with three circumferential waves are practically double than the natural frequencies of the two modes (driven and companion) with two circumferential waves. This introduces a one-to-one-to-two-to-two internal resonance in the presence of harmonic excitation in the spectral neighbourhood of the natural frequency of the mode with two circumferential waves. Since the system is excited by a multi-harmonic point-load excitation composed by first and second harmonics, very complex nonlinear dynamics is obtained around the resonance of the fundamental mode. In fact, at this frequency, both modes with two and three circumferential waves are driven to resonance and each one is in a one-to-one internal resonance with its companion mode. The nonlinear dynamics is explored by using bifurcation diagrams of Poincaré maps and time responses.  相似文献   

7.
An experimental validation of the suitability of reduction methods for studying nonlinear vibrations of distributed-parameter systems is attempted. Nonlinear planar vibrations of a clamped-clamped buckled beam about its first post-buckling configuration are analyzed. The case of primary resonance of the nth mode of the beam, when no internal resonances involving this mode are active, is investigated. Approximate solutions are obtained by applying the method of multiple scales to a single-mode model discretized via the Galerkin procedure and by directly attacking the governing integro-partial-differential equation and boundary conditions with the method of multiple scales. Frequency-response curves for the case of primary resonance of the first mode are generated using both approaches for several buckling levels and are contrasted with experimentally obtained frequency-response curves for two test beams. For high buckling levels above the first crossover point of the beam, the computed frequency-response curves are qualitatively as well as quantitatively different. The experimentally obtained frequency-response curves for the directly excited first mode are in agreement with those obtained with the direct approach and in disagreement with those obtained with the single-mode discretization approach.  相似文献   

8.
In this paper, the nonlinear planar vibration of a pipe conveying pulsatile fluid subjected to principal parametric resonance in the presence of internal resonance is investigated. The pipe is hinged to two immovable supports at both ends and conveys fluid at a velocity with a harmonically varying component over a constant mean velocity. The geometric cubic nonlinearity in the equation of motion is due to stretching effect of the pipe. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of mean flow velocity, resulting in a three-to-one internal resonance. The analysis is done using the method of multiple scales (MMS) by directly attacking the governing nonlinear integral-partial-differential equations and the associated boundary conditions. The resulting set of first-order ordinary differential equations governing the modulation of amplitude and phase is analyzed numerically for principal parametric resonance of first mode. Stability, bifurcation, and response behavior of the pipe are investigated. The results show new zones of instability due to the presence of internal resonance. A wide array of dynamical behavior is observed, illustrating the influence of internal resonance.  相似文献   

9.
An analytical study of the nonlinear vibrations in a three-time redundant portal frame is presented herewith, considering the effect of the axial forces caused by the static loading upon the first anti-symmetrical mode (sway) and the first symmetrical mode natural frequencies. It is seen that the axial forces may play an important role in tuning the sway mode and the first symmetrical mode into a 1:2 internal resonance. Harmonic support excitations resonant with the first symmetrical mode are then introduced and the amplitudes of nonlinear steady states are computed based upon a multiple scales solution. Comparisons with numerical analyses using a finite-element program developed by the authors show good qualitative agreement.  相似文献   

10.
Applying the multidimensional Lindstedt-Poincaré (MDLP) method, we study the forced vibrations with internal resonance of a clamped-clamped pipe conveying fluid under external periodic excitation. The frequency-amplitude response curves of the first-mode resonance with internal resonance are obtained and its characteristics are discussed; moreover, the motions of the first two modes are also analyzed in detail. The present results reveal rich and complex dynamic behaviors caused by internal resonance and that some of the internal resonances are decided by the excitation amplitude. The MDLP method is also proved to be a simple and efficient technique to deal with nonlinear dynamics.  相似文献   

11.
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1999,20(2):131-158
The nonlinear planar response of a hinged-clamped beam to a principal parametric resonance of either its first or second mode or a combination parametric resonance of the additive type of its first two modes is investigated. The analysis accounts for mid-plane stretching, a static axial load, a restraining spring at one end, and modal damping. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of static axial loads, resulting in a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear integral-partial-differential equation and associated boundary conditions and derive three sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the cases of (a) principal parametric resonance of either the first or the second mode, and (b) a combination parametric resonance of the additive type of these modes. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of principal parametric resonance of the first mode or combination parametric resonance of the additive type, trivial and two-mode solutions are possible, whereas for the case of parametric resonance of the second mode, trivial, single, and two-mode solutions are possible. The trivial and two-mode equilibrium solutions of the modulation equations may undergo either a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. For some excitation parameters, we found complex responses including period-doubling bifurcations and blue-sky catastrophes.  相似文献   

12.
In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.  相似文献   

13.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.  相似文献   

14.
This study is devoted to the experimental validation of a theoretical model of large amplitude vibrations of thin spherical shells described in a previous study by the same authors. A modal analysis of the structure is first detailed. Then, a specific mode coupling due to a 1:1:2 internal resonance between an axisymmetric mode and two companion asymmetric modes is especially addressed. The structure is forced with a simple-harmonic signal of frequency close to the natural frequency of the axisymmetric mode. The experimental setup, which allows precise measurements of the vibration amplitudes of the three involved modes, is presented. Experimental frequency response curves showing the amplitude of the modes as functions of the driving frequency are compared to the theoretical ones. A good qualitative agreement is obtained with the predictions given by in the model. Some quantitative discrepancies are observed and discussed, and improvements of the model are proposed.  相似文献   

15.
The vibrations of thin rectangular plate with geometrical nonlinearity are analyzed. The models of plate vibrations with different numbers of degrees-of-freedom are derived. It is deduced that two degrees-of-freedoms are enough to describe low-frequency nonlinear dynamics of plates. Nonlinear normal modes are used to analyze the system dynamics. If vibrations amplitudes are increased, single-mode plate vibrations are transformed into two mode ones. In this case, internal resonance conditions are not observed. Such transformation of vibration is described using Kauderer?CRosenberg nonlinear normal modes.  相似文献   

16.
The nonlinear response of an initially buckled beam in the neighborhood of 1:1 internal resonance is investigated analytically, numerically, and experimentally. The method of multiple time scales is applied to derive the equations in amplitudes and phase angles. Within a small range of the internal detuning parameter, the first mode; which is externally excited, is found to transfer energy to the second mode. Outside this region, the response is governed by a unimodal response of the first mode. Stability boundaries of the unimodal response are determined in terms of the excitation level, and internal and external detuning parameters. Boundaries separating unimodal from mixed mode responses are obtained in terms of the excitation and internal detuning parameters. Stationary and non-stationary solutions are found to coexist in the case of mixed mode response. For the case of non-stationary response, the modulation of the amplitude depends on the integration increment such that the motion can be periodically or chaotically modulated for a choice of different integration increments. The results obtained by multiple time scales are qualitatively compared with those obtained by numerical simulation of the original equations of motion and by experimental measurements. Both numerical integration and experimental results reveal the occurrence of multifurcation, escaping from one well to the other in an irregular manner. and chaotic motion.  相似文献   

17.
A new asymptotic method is proposed to describe the free and forced transverse vibrations of elastic laminated beams of arbitrary cross section using the three-dimensional elastic equations without additional hypotheses and constraints. For beams with layers of equal Poisson's ratio, the zero-order natural frequencies are equal to the natural frequencies predicted by classical beam theory based on the Bernoulli hypothesis. The method makes it possible to calculate the frequencies of free vibrations and amplitudes of forced vibrations with prescribed accuracy for the first natural modes __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 56–71, June 2005.  相似文献   

18.
This paper investigates the nonlinear dynamics of a doubly clamped piezoelectric nanobeam subjected to a combined AC and DC loadings in the presence of three-to-one internal resonance. Surface effects are taken into account in the governing equation of motion to incorporate the associated size effects at nanoscales. The reduced-order model equation (ROM) is obtained based on the Galerkin method. The multiple scales method is applied directly to the nonlinear equation of motion and associated boundary conditions to obtain the modulation equations. The equilibrium solutions of the modulation equations and the dynamic solutions of the ROM equation are investigated in the case of primary and principal parametric resonances of the first mode. Stability, bifurcations and frequency response curves of the nanobeam are investigated. Dynamic behaviors of the motion are shown in the form of time traces, phase portraits, Poincare sections and fast Fourier transforms. The results indicate rich dynamic behaviors such as Hopf bifurcations, periodic and quasiperiodic motions in both directly and indirectly excited modes illustrating the influence of modal interactions on the response.  相似文献   

19.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

20.
This paper considers the transverse vibrations of fluid-filled double-bellows expansion joints. The bellows are modelled as a Timoshenko beam, and the fluid added mass includes rotary inertia and bellows convolution distortion effects. The natural frequencies are given in terms of a Rayleigh quotient, and both lateral and rocking modes of the pipe connecting the bellows units are considered. The theoretical predictions for the first six modes are compared with experiments in still air and water and the agreement is found to be very good. The flow-induced vibrations of the double bellows are then studied with the bellows downstream of a straight section of pipe and a 90° elbow. Strouhal numbers are computed for each of the flow-excited mode resonances. The bellows natural frequencies are not affected by the flowing fluid but the presence of an immediate upstream elbow substantially reduces the flow velocity required to excite resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号