首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cai H  Yu X  Chen S  Qiu H  Guzei IA  Xue ZL 《Inorganic chemistry》2007,46(19):8071-8078
M(NMe2)4 (M = Zr, 1a; Hf, 1b) and the silyl anion (SiButPh2)- (2) in Li(THF)2SiButPh2 (2-Li) were found to undergo a ligand exchange to give [M(NMe2)3(SiButPh2)2]- (M = Zr, 3a; Hf, 3b) and [M(NMe2)5]- (M = Zr, 4a; Hf, 4b) in THF. The reaction is reversible, leading to equilibria: 2 1a (or 1b) + 2 2 <--> 3a (or 3b) + 4a (or 4b). In toluene, the reaction of 1a with 2 yields [(Me2N)3Zr(SiButPh2)2]-[Zr(NMe2)5Li2(THF)4]+ (5) as an ionic pair. The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in (Me2N)3Zr-N(SiMe3)2 (6a) to give 3a and [N(SiMe3)2]- (7) in reversible reaction: 6a + 2 2 <--> 3a + 7. The following equilibria have also been observed and studied: 2M(NMe2)4 (1a; 1b) + [Si(SiMe3)3]- (8) <--> (Me2N)3M-Si(SiMe3)3 (M = Zr, 9a; Hf, 9b) + [M(NMe2)5]- (M = Zr, 4a; Hf, 4b); 6a (or 6b) + 8 <--> 9a (or 9b) + [N(SiMe3)2]- (7). The current study represents rare, direct observations of reversible amide-silyl exchanges and their equilibria. Crystal structures of 5, (Me2N)3Hf-Si(SiMe3)3 (9b), and [Hf(NMe2)4]2 (dimer of 1b), as well as the preparation of (Me2N)3M-N(SiMe3)2 (6a; 6b) are also reported.  相似文献   

2.
Yu X  Bi S  Guzei IA  Lin Z  Xue ZL 《Inorganic chemistry》2004,43(22):7111-7119
New transition metal silyl amide complexes (Me(2)N)(3)Ta[N(SiMe(3))(2)](SiPh(2)Bu(t)) (1) and (Me(2)N)M[N(SiMe(3))(2)](2)(SiPh(2)Bu(t)) (M = Zr, 2a, and Hf, 2b) were found to undergo gamma-H abstraction by the silyl ligands to give metallaheterocyclic complexes (3) and (M = Zr, 4a, and Hf, 4b), respectively. The conversion of 1 to 3 follows first-order kinetics with DeltaH() = 23.6(1.6) kcal/mol and DeltaS() = 3(5) eu between 288 and 313 K. The formation of 4a from (Me(2)N)Zr[N(SiMe(3))(2)](2)Cl (5a) and Li(THF)(2)SiPh(2)Bu(t) (6) involves the formation of the intermediate 2a, followed by gamma-H abstraction. Kinetic studies of these consecutive reactions, a second-order reaction to give 2a and then a first-order gamma-H abstraction to give 4a, were conducted by an analytical method and a numerical method. At 278 K, the rate constants k(1) and k(2) for the two consecutive reactions are 2.17(0.03) x 10(-)(3) M(-)(1) s(-)(1) and 5.80(0.15) x 10(-)(5) s(-)(1) by the analytical method. The current work is a rare kinetic study of the A + B --> C --> D (+ E) consecutive reactions. Kinetic studies of the formation of a metallaheterocyclic moiety have, to our knowledge, not been reported. In addition, gamma-H abstraction by a silyl ligand to give such a metallaheterocyclic moiety is new. Theoretical investigations of the gamma-H abstraction by silyl ligands have been conducted by density functional theory calculations at the Becke3LYP (B3LYP) level, and they revealed that the formation of the metallacyclic complexes through gamma-H abstraction is entropically driven. X-ray crystal structures of (Me(2)N)(3)Ta[N(SiMe(3))(2)](SiPh(2)Bu(t)) (1), (Me(2)N)Zr[N(SiMe(3))(2)](2)Cl (5a), and (M = Zr, 4a, and Hf, 4b) are also reported.  相似文献   

3.
Qiu H  Chen S  Xue ZL 《Inorganic chemistry》2007,46(15):6178-6181
Kinetic studies have been performed for the substitution of the first silyl ligand in (Me(2)N)(3)Ta[Si(SiMe(3))(3)](2) (1) by Li(THF)(3)SiButPh(2) at 233 K (THF = tetrahydrofuran). In the presence of excess Li(THF)(3)SiButPh(2), these studies reveal that the reaction likely follows a dissociative pathway. THF, a polar solvent, is found to promote the substitution, and the order of the reaction with respect to THF is 1.7(0.3).  相似文献   

4.
Wang ZX  Li YX 《Inorganic chemistry》2002,41(23):5934-5936
Reaction of MCl4 (M = Zr, Hf) with 2 equiv of 2-iminophosphorano-1-phosphaallyl lithium [Li[P(Ph)C(=CHPh)P(Me)2=NSiMe3](THF)1.5] (1) affords ligand coupling complexes 3 and 4, respectively, while similar treatment of ZrCl4 with [Li[P(Ph)C(=C(SiMe2Bu(t))Ph)P(Me)2=NSiMe3](THF)2] (2) yields ligand transfer complex 5.  相似文献   

5.
The synthesis and structural characterization of a rare example of a uranyl complex possessing three equatorial ligands, [M(THF)2][UO2(N(SiMe3)2)3] (3a, M = Na; 3b, M = K), are described. The sodium salt 3a is prepared by protonolysis of [Na(THF)2]2[UO2(N(SiMe3)2)4], whereas the potassium salt 3b is obtained via a metathesis reaction of uranyl chloride UO2Cl2(THF)2 (4) with 3 equiv of K[N(SiMe3)2]. A single-crystal X-ray diffraction study of 3a revealed a trigonal-bipyramidal geometry about uranium, formed by two axial oxo and three equatorial amido ligands, with average U=O and U-N bond distances of 1.796(5) and 2.310(4) A, respectively. One of the oxo ligands is also coordinated to the sodium counterion. 1H NMR spectroscopic studies indicate that THF adds reversibly as a ligand to 3 to expand the trigonal bipyramidal geometry. The degree to which the coordination sphere in 3 is electronically satisfied with only three amido donors is suggested by (1) the reversible THF coordination, (2) a modest elongation in the bond distances for a five-coordinate U(VI) complex, and (3) the basicity of the oxo ligands as evidenced in the contact to Na. The vibrational spectra of the series of uranyl amido complexes [UO2(N(SiMe3)2)n]2-n (n = 2-4) are compared, to evaluate the effects on the axial U=O bonding as a function of increased electron density donated from the equatorial region. Raman spectroscopic measurements of the nu 1 symmetric O=U=O stretch show progressive axial bond weakening as the number of amido donors is increased. Crystal data for [Na(THF)2][UO2(N(SiMe3)2)3]: orthorhombic space group Pna2(1), a = 22.945(1) A, b = 15.2830(7) A, c = 12.6787(6) A, z = 4, R1 = 0.0309, wR2 = 0.0524.  相似文献   

6.
Zhou M  Gong T  Qiao X  Tong H  Guo J  Liu D 《Inorganic chemistry》2011,50(5):1926-1930
Treatment of the appropriate lithium or sodium 2,4-N,N'-disubstituted 1,3,5-triazapentadienate [RNC(R')NC(R')N(SiMe(3))M](2) (R = Ph, 2,6-(i)Pr(2)-C(6)H(3)(Dipp) or SiMe(3); R' = NMe(2) or 1-piperidino; M = Li or Na) with one or half equivalent portion of MgBr(2)(THF)(2) in Et(2)O under mild conditions furnishes in good yield the first structurally characterized molecular magnesium 2,4-N,N'-disubstituted 1,3,5-triazapentadienates [DippNC(NMe(2))NC(NMe(2))N(SiMe(3))MgBr](2) (1), [{RNC(R')NC(R')N(SiMe(3))}(2)Mg] (R = Ph, R' = NMe(2) 2; R = Ph, R' = 1-piperidino 3; R = SiMe(3), R' = 1-piperidino 4). The solid-state structure of 1 is dimeric and those of 2, 3, and 4 are monomeric. The ligand backbone NCNCN in 1 adopts a W-shaped configuration, while in 2, 3 and 4 adopts a U-shaped configuration.  相似文献   

7.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

8.
Silyl anion SiButPh2- (2) was found to substitute an amide ligand in Zr(NMe2)4 (3) to give the disilyl complex Zr(NMe2)3(SiButPh2)2- (1a) and Zr(NMe2)5- (1b) in THF. The reaction is reversible, and nucleophilic amide NMe2- attacks the Zr-SiButPh2 bonds in 1a or Zr(NMe2)3(SiButPh2) in the reverse reaction, leading to an unusual ligand exchange equilibrium 2 3 + 2 2 right harpoon over left harpoon 1a + 1b (eq 1). The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in Zr(NMe2)3[N(SiMe3)2] (6) to give 1a and N(SiMe3)2- (7). Reversible reaction occurs as well, where 7 selectively substitutes the silyl ligand in Zr(NMe2)3(SiButPh2)2- (1a) or Zr(NMe2)3(SiButPh2), giving the equilibrium 6 + 2 2 right harpoon over left harpoon 1a + 7 (eq 3). The thermodynamics of these equilibria has been studied: For eq 1, DeltaH degrees = -8.3(0.2) kcal/mol, DeltaS degrees = -23.3(0.9) eu, and DeltaG degrees 298K = -1.4(0.5) kcal/mol at 298 K; for eq 3, DeltaH degrees = -1.61(0.12) kcal/mol, DeltaS degrees = -2.6(0.5) eu, and DeltaG degrees 298K = -0.8(0.3) kcal/mol. In both equilibria, the enthalpy changes for the forward reactions outweigh the entropy changes, and therefore the substitutions of amide ligands in Zr(NMe2)4 (3) and Zr(NMe2)3[N(SiMe3)2] (6) to afford the disilyl complex 1a are thermodynamically favored. The following equilibria were also observed and studied: Zr(NMe2)3[N(SiMe3)2] (6) + Si(SiMe3)3- (9) right harpoon over left harpoon Zr(NMe2)3[Si(SiMe3)3] (10) + N(SiMe3)2- (7) and Zr(NMe2)4 (3) + 9 right harpoon over left harpoon 10 + Zr(NMe2)5- (1b).  相似文献   

9.
The coordination chemistry of the bis(dimethylphenylsilyl)amide ligand, [N(SiMe2Ph)2]1-, with sodium, potassium, and lanthanum has been investigated for comparison with the more commonly used [N(SiMe3)2]1- and [N(SiHMe2)2]1- ligands. HN(SiMe2Ph)2 reacts with KH to produce KN(SiMe2Ph)2, 1, which crystallizes from toluene as the dimer [KN(SiMe2Ph)2(C7H8)]2, 2. The structure of 2 shows that the [N(SiMe2Ph)2]1- ligand can function as a polyhapto ligand with coordination from each phenyl group as well as the normal nitrogen ligation and agostic methyl interactions common in methylsilylamides. Each potassium in 2 is ligated by an eta4-toluene, two bridging nitrogen atoms, and an eta2-phenyl, an eta1-phenyl, and an eta1-methyl group. KN(SiMe2Ph)2 crystallizes from toluene in the presence of 18-crown-6 to make the monometallic complex (18-crown-6)KN(SiMe2Ph)2, 3, in which [N(SiMe2Ph)2]1- functions as a simple monodentate ligand through nitrogen. The reaction of HN(SiMe2Ph)2 with NaH in THF at reflux for 2 days generates Na[N(SiMe2Ph)2], 4, which crystallizes as the solvated dimer {(THF)Na[mu-eta1:eta1-N(SiMe2Ph)2]}2, 5. A lanthanide metallocene derivative of [N(SiMe2Ph)2]1- was obtained by reaction of K[N(SiMe2Ph)2] with [(C5Me5)2La][(mu-Ph)2BPh2]. Crystals of (C5Me5)2La[N(SiMe2Ph)2], 6, show agostic interactions between lanthanum and methyl groups of each silyl substituent. The [N(SiMe3)2]1- analogue of 3, (18-crown-6)KN(SiMe3)2, 7, was also structurally characterized for comparison.  相似文献   

10.
The reactions of [Zr(NMe2)4]2 with triamido-triazacyclonane ligand precursors, {NH(Ph)SiMe2}3tacn (H3N3[9]N3) and {NH(C6H4F)SiMe2}3tacn (H3N3-F[9]N3), led to the formation of complexes [Zr(NMe2)2{N(Ph)SiMe2}2{NH(Ph) SiMe2}tacn], 1, and [Zr(NMe2)2{N(o-C6H4F)SiMe2}2{NH(o-C6H4F)SiMe2} tacn], 2, where the zirconium is coordinated to two remaining dimethylamido ligands and to a dianionic tacn-based ligand, [{N(Ph')SiMe2}2{NH(Ph')SiMe2}tacn]2-, that formed from deprotonation of two amine pendent arms of the ligands' precursors. The third pendent arm of H3N3[9]N3 and H3N3-F[9]N3 remains neutral and not bonded to the zirconium. Treatment of 1 with NaH led to the synthesis of [Zr(NMe2){N(Ph)SiMe2}2tacn], 3, that results from the cleavage of the N-Si bond of the original neutral pendent arm. Complexes [ZrCl{N(Ph')SiMe2}2tacn] (Ph' = C6H5, 4, and C6H4F, 5) have been obtained by reactions of ZrCl4 with {MN(Ph')SiMe2}3tacn.2THF (M = Li, Na). Reactions of 4 and 5 with LiC triple bond CPh led to the syntheses of [Zr(CCPh){N(Ph')SiMe2}2tacn] (Ph' = C6H5, 6, and C6H4F, 7). The solid-state structure of 3 shows a chiral metal center.  相似文献   

11.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

12.
Zhou M  Song Y  Gong T  Tong H  Guo J  Weng L  Liu D 《Inorganic chemistry》2008,47(15):6692-6700
Addition reaction of ArN(SiMe 3)M (Ar = Ph or 2,6 - (i) Pr 2-C 6H 3 (Dipp); M = Li or Na) to 2 equivalents of alpha-hydrogen-free nitrile RCN (R = dimethylamido) gave the dimeric [M{N(Ar)C(NMe 2)NC(NMe 2)N(SiMe 3)}] 2 ( 1a, Ar = Ph, M = Li; 1b, Ar = Ph, M = Na; 1c, Ar = Dipp, M = Li). 1d was obtained by hydrolysis of 1c at ambient temperature. Treatment of a double ratio of 1a or 1b with anhydrous MCl 2 (M = Mn, Fe, Co) yielded the 1,3,5-triazapentadienato complexes [M{N(Ph)C(NMe 2)NC(NMe 2)N(SiMe 3)} 2] (M = Mn, 2; Fe, 3; Co, 4) and with NiCl 2.6H 2O gave [M{N(Ph)C(NMe 2)NC(NMe 2)N(H)} 2] (M = Ni, 5). Treatment of an equiv of 1c with anhydrous CuCl in situ and in air led to complexes [{N(Dipp)C(NMe 2)NC(NMe 2)N(SiMe 3)}CuPPh 3] 6 and [Cu{N(Dipp)C(NMe 2)NC(NMe 2)N(H)} 2] 7, respectively. 1c, 1d, and 2- 7 were characterized by X-ray crystallography and microanalysis. 1c, 1d, 5, and 6 were well characterized by (1)H, (13)C NMR, 1c by (7)Li, and 6 by (31)P NMR as well. The structural features of these complexes were described in detail.  相似文献   

13.
Russian Journal of Coordination Chemistry - The exchange reaction of anhydrous YbCl3 with [1,3-C6H4{NC(Ph)N(SiMe3)}2Li2(THF)2]2 (I) (4&nbsp;: 3 molar ratio, THF) gave ansa-bis(amidinate)...  相似文献   

14.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

15.
Pale-yellow crystals of the nonsolvated monomeric silyl- and germyllithiums, tris[di-tert-butyl(methyl)silyl]silyllithium 2a and tris[di-tert-butyl(methyl)silyl]germyllithium 2b, were obtained by one-electron reduction of the corresponding silyl and germyl radicals with lithium in hexane. The crystal structure analysis of both 2a and 2b showed almost planar geometry around the anionic centers, due to both intramolecular CH-Li agostic interactions and steric reasons. However, the free anions [(tBu2MeSi)3Si-][Li+(THF)4] 3a and [(tBu2MeSi)3Ge-][Li+(THF)n] (n = 3, 4) 3b no longer showed a planar geometry, because of the absence of the intramolecular CH-Li agostic interaction. A temperature-dependent 1H NMR study of 2a showed that the CH-Li interaction is weak.  相似文献   

16.
The novel tridentate azaoxa macrocycle [O(NH)2], 3,3-dimethyl-1,5-diaza-8-oxacyclodecane, can be singly or doubly lithiated with (n)BuLi at the secondary amine N atoms, giving [O(NH)N]Li and [O(N)2]Li2, respectively, and further elaborated with introduction of TMS substituents via reaction with (TMS)Cl. Aminolysis of [Ti(NMe2)2Cl2] or [Zr(NR2)2Cl2(THF)2] with [O(NH)2] in toluene gave the distorted octahedral M[O(NH)N](NR2)Cl2 (M = Ti, R = Me; M = Zr, R = Me or Et), in which the macrocycle functions as a monoanionic ligand via an amido, an amine, and an ether functionality. Salt metathesis of [Zr(NEt2)2Cl2(THF)2] with [O(NH)N]Li in toluene afforded Zr[(O(NH)N)](NEt2)2Cl, the structure of which also confirms tridentate macrocycle coordination via one amido, one amine, and one ether group; in contrast, analogous salt metathesis involving [Zr(NEt2)2Cl2(THF)2] and [O(N)2Li2] gave the "sandwich" complex [(ON2)2Zr], with the macrocycle behaving as a dianionic ligand (Porter, R. M.; et al. Dalton Trans. 2005, 427). Finally, treatment of [O(NH)2] with AlMe3 gave the simple donor-acceptor adduct [O(NH)2]AlMe3, which resisted alkanolysis by prolonged heating. In the presence of MAO the new zirconium, titanium, and aluminum complexes show low activity in the polymerization of ethylene.  相似文献   

17.
Mixed amidinato amido complexes [Me3SiNC(tBu)NSiMe3]M[N(SiMe3)2] (M = Sn 2, Ge 3) were prepared by the reaction of [Me3SiNC(tBu)NSiMe3]Li (1a) with SnCl2 and GeCl2(dioxane) in ether. The N(SiMe3)2 ligand in these compounds is derived from the rearrangement of the [Me3SiNC(tBu)NSiMe3]- anion with extrusion of tBuCN. The susceptibility of [Me3SiNC(tBu)NSiMe3]- to rearrangement appears to be dependent on reaction solvent and on the coordinated metal center. Single-crystal X-ray diffraction studies of 2 and 3 are presented. Replacement of Me for tBu in the ligand allowed [Me3SiNC(Me)NSiMe3]2SnII (4) to be isolated, and an X-ray structure of this compound is reported. The isolation of 4 indicates that steric factors also play a role in the stability of [Me3SiNC(tBu)NSiMe3]-. Compounds 2 and 3 are outstanding catalysts for the cyclotrimerization of phenyl isocyanates to perhydro-1,3,5-triazine-2,4,6-triones (isocyanurates) at room temperature. In contrast, complex 4 catalytically reacts with phenyl isocyanate to produce isocyanate dimer and trimer in a 52:35 ratio.  相似文献   

18.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

19.
The reaction of the chelating ligand tBuNTe(mu-NtBu)2TeNtBu (L) with LiI in THF yields [Li(THF)2L](mu 3-I)[LiI(L)] (3). This complex is also formed by the attempted oxidation of [Li2Te(NtBu)3]2 with I2. An X-ray analysis of 3 reveals that the tellurium diimide dimer acts as a chelating ligand toward (a) [Li(THF)2]+ cations and (b) a molecule of LiI. An extended structure is formed via weak Te...I interactions [3.8296(7)-3.9632(7) A] involving both mu 3-iodide counterions and the iodine atoms of the coordinated LiI molecules. Crystal data: 3, triclinic, space group P1, a = 10.1233(9) A, b = 15.7234(14) A, c = 18.8962(17) A, alpha = 86.1567(16) degrees, beta = 84.3266(16) degrees, gamma = 82.9461(16) degrees, V = 2965.8(5) A3, Z = 2. The oxidation by air of [Li2Te(NtBu)3]2 in toluene produces the radical (Li3[Te(NtBu)3]2), which exhibits an ESR spectrum consisting of a septet of decuplets (g = 2.00506, a(14N) = 5.26 G, a(7Li) = 0.69 G). The complexes [(THF)3Li3(mu 3-X)(Te(NtBu)3)] (4a, X = Cl; 4b, X = Br; 4c, X = I) are obtained from the reaction of [Li2Te(NtBu)3]2 with lithium halides in THF. The iodide complex, 4c, has a highly distorted, cubic structure comprised of the pyramidal [Te(NtBu)3]2- dianion which is linked through three [Li(THF)]+ cations to I- Crystal data: 4c, triclinic, space group P1, a = 12.611(8) A, b = 16.295(6) A, c = 10.180(3) A, alpha = 98.35(3) degrees, beta = 107.37(4) degrees, gamma = 108.26(4) degrees, V = 1829(2) A3, Z = 2.  相似文献   

20.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号