首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tortuosity, 1/alpha, and surface-to-volume ratio, S/V, were determined in aqueous solutions of decylammonium, dodecylammonium and tetradecylammonium chlorides of various concentrations by measuring the apparent diffusion coefficient of water, D(app)(delta). This was found to be much smaller than in the bulk state. Such restricted diffusion is interpreted in terms of the Mitra model, where D(delta) depends on diffusion time and is controlled primarily by S/V. The samples exhibit lamellar (L), hexagonal (H) and isotropic (I) liquid crystalline phases. We observed changes in S/V upon phase transition. In the lamellar and hexagonal phases, the system is ordered, resulting in relatively small S/V ratios, compared to the micellar-isotropic phase. We did not observe a dependence on the diffusion time, delta, in the isotropic phase, because the duration of the experiment was not sufficiently short to observe the change from D(app)(delta) to D(eff). We observed the effective diffusion coefficient of water, which directly probes the tortuosity of the system. The S/V ratios were obtained by fitting the Mitra model, using known values of the bulk water diffusion coefficients, and the assumption that D(app) --> D0 for delta --> 0. S/V is correlated with the type of structure, increasing on transition to the isotropic phase and decreasing on transition to other phases. The change in tortuosity is small, but slightly larger for the isotropic phase.  相似文献   

2.
We investigate the diffusion coefficient of the time integral of the Kuramoto order parameter in globally coupled nonidentical phase oscillators. This coefficient represents the deviation of the time integral of the order parameter from its mean value on the sample average. In other words, this coefficient characterizes long-term fluctuations of the order parameter. For a system of N coupled oscillators, we introduce a statistical quantity D, which denotes the product of N and the diffusion coefficient. We study the scaling law of D with respect to the system size N. In other well-known models such as the Ising model, the scaling property of D is D~O(1) for both coherent and incoherent regimes except for the transition point. In contrast, in the globally coupled phase oscillators, the scaling law of D is different for the coherent and incoherent regimes: D~O(1/N(a)) with a certain constant a>0 in the coherent regime and D~O(1) in the incoherent regime. We demonstrate that these scaling laws hold for several representative coupling schemes.  相似文献   

3.
Measurements on helium and argon gas flow through an array of parallel, linear channels of 12 nm diameter and 200 microm length in a single crystalline silicon membrane reveal a Knudsen diffusion type transport from 10(2) to 10(7) in Knudsen number Kn. The classic scaling prediction for the transport diffusion coefficient on temperature and mass of diffusing species, D(He) is proportional to square root T, is confirmed over a T range from 40 K to 300 K for He and for the ratio of D(He)/D(Ar) is proportional to square root (m(Ar)/m(He)). Deviations of the channels from a cylindrical form, resolved with electron microscopy down to subnanometer scales, quantitatively account for a reduced diffusivity as compared to Knudsen diffusion in ideal tubular channels. The membrane permeation experiments are described over 10 orders of magnitude in Kn, encompassing the transition flow regime, by the unified flow model of Beskok and Karniadakis.  相似文献   

4.
A particle in a random potential with logarithmic correlations in dimensions d = 1,2 is shown to undergo a dynamical transition at T(dyn)>0. In d = 1 exact results show T(dyn) = T(c), the static glass transition temperature, and that the dynamical exponent changes from z(T) = 2+2(T(c)/T)(2) at high T to z(T) = 4T(c)/T in the glass phase. The same formulas are argued to hold in d = 2. Dynamical freezing is also predicted in the 2D random gauge XY model and related systems. In d = 1 a mapping between dynamics and statics is unveiled and freezing involves barriers as well as valleys. Anomalous scaling occurs in the creep dynamics, relevant to dislocation motion experiments.  相似文献   

5.
We show that finite-size scaling techniques can be employed to study the glass transition. Our results follow from the postulate of a diverging dynamical correlation length at the glass transition whose physical manifestation is the presence of dynamical heterogeneities. We introduce a parameter B(T,L) whose temperature, T, and system size, L, dependences permit a precise location of the glass transition. We discuss the finite-size scaling behavior of a diverging susceptibility chi(L,T). These new techniques are successfully used to study two lattice models. The analysis straightforwardly applies to any glass-forming system.  相似文献   

6.
We present a direct measurement of self-diffusion of a single-component glass-forming liquid at the glass transition temperature. Forward recoil spectrometry is used to measure the concentration profiles of deuterio and protio 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene (TNB) following annealing-induced diffusion in a vapor-deposited bilayer. These experiments extend the range of measured diffusion coefficients in TNB by 6 orders of magnitude. The results indicate a decoupling of translational diffusion coefficients from viscosity or rotation. At T(g), D(T) is 400 times larger than expected from the Stokes-Einstein equation.  相似文献   

7.
Using a linear optical diffraction method, we have experimentally studied the long predicted diffusion anomalous behavior for H/W(100) near the reconstructive phase transition of the W(100) substrate. This anomaly manifests itself in the form of a strong dip in the diffusion coefficient D at the transition temperature T(C). We interpret the strong reduction of D as a result of the diverging friction damping near the transition. The finite dip in D instead of a vanishing D at T(C) also demonstrates the importance of the non-Markovian (memory) deviation from the simple instantaneous damping picture.  相似文献   

8.
C. Leppla  S. Wiegand 《哲学杂志》2013,93(17-18):1989-1999

Within the framework of an international benchmark test we have performed measurements of the transport coefficients S T (Soret coefficient), D (mutual diffusion coefficient) and D T (thermal diffusion coefficient) on the three binary organic liquid mixtures 1,2,3,4-tetrahydronaphthalene- n -dodecane, 1,2,3,4-tetra- hydronaphthalene-isobutylbenzene and isobutylbenzene- n -dodecane with the weight fraction c = 0.5 at T = 298.15 K by means of thermal-diffusion-forced Rayleigh scattering (TDFRS) for benchmarking purposes. Our results for the coefficients are in good agreement with those obtained by annular and parallelepipedic thermogravitational columns and by other benchmark tests which also apply TDFRS measurements.  相似文献   

9.
Gerhard Wittko  Werner Köhler 《哲学杂志》2013,93(17-18):1973-1987

Within the framework of an international benchmark test, the Soret coefficient S T , thermal diffusion coefficient D T and mutual mass diffusion coefficient D of the three binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene with a concentration of 50 wt% of each component at a temperature of 25C have been measured with a holographic grating technique. For the analysis of the experimental data a new numerical correction algorithm based on linear response theory has been employed. The corrections applied are on the order of 1% for S T and 5% for D . The coefficients S T , D and D T are determined with relative errors of a few per cent.  相似文献   

10.
We used inelastic neutron scattering to study magnetic excitations of Sc1-xUxPd3 for U concentrations (x=0.25, 0.35) near the spin glass quantum critical point (QCP). The excitations are spatially incoherent, broad in energy (E=variant Planck's over 2piomega), and follow omega/T scaling at all wave vectors investigated. Since similar omega/T scaling has been observed for UCu5-xPdx and CeCu6-xAux near the antiferromagnetic QCP, we argue that the observed non-Fermi-liquid behavior in these f-electron materials arises from the critical phenomena near a T=0 K phase transition, irrespective of the nature of the transition.  相似文献   

11.
The magnetization of the sigma-phase Fe(0.53)Cr(0.47) and Fe(0.52)V(0.48) alloys was studied as a function of temperature and field. The experiments show that both materials behave magnetically as re-entrant spin glass systems. Field versus temperature diagrams were obtained where the locations of the paramagnetic phase, the intermediate ferromagnetic-like phase and the spin glass fundamental state were displayed. These diagrams are in qualitative agreement with the predictions of the mean field theory for the interplay between the ferromagnetic and spin glass orderings. The critical phenomenology near the para-ferromagnetic transition could be investigated. It was found that the paramagnetic susceptibility is quite well described by the extended scaling scheme, where the reduced temperature is written as τ = (T - T(c))/T. The value obtained for the susceptibility critical exponent γ is intermediate between the prediction of the 3D Heisenberg universality class and the large values observed in spin glasses, as previously found in other re-entrant systems. The data do not confirm the validity of the extended scaling in the ferromagnetic-like phase. Using either the conventional or extended scaling protocols, the exponents β and δ were found to have values close to those reported for spin glass transitions. Despite the relevance of disorder and the anomalous values determined for β, γ and δ, the Widom scaling relation holds as an equality.  相似文献   

12.

Within the framework of an international benchmark test, the Soret coefficient S T , the thermodiffusion coefficient D T , and the isothermal mass diffusion coefficient D of the three binary systems formed with dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene (with a mass fraction of 0.5 in each component at a temperature of 25C) have been measured. Convective coupling in thermogravitational columns has been used to determine D T based on the Furry-Jones-Onsager theory and the so-called open-ended capillary technique for D . The ratio of D T to D , obtained in these two independent experiments, provides the Soret coefficient. In one case, we were able to use laser Doppler velocimetry to measure the modifications of the velocity amplitude due to thermodiffusion, which is also a way to obtain the Soret coefficient. Our results for these three coefficients are in good agreement with those obtained by other benchmark tests.  相似文献   

13.
We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having different ratios l( ||)/l( perpendicular). We find, in addition to the fact that a higher fluctuation level deltaB/B(0) makes the system more stochastic, that by increasing the ratio l( ||)/l( perpendicular) at fixed deltaB/B(0), the stochasticity increases. It appears that the different transport regimes can be organized in terms of the Kubo number R=(deltaB/B(0))(l( ||)/l( perpendicular)). The simulation results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When R<1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are found. When R approximately 1 the diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(2) is recovered. Finally, for R>1 the percolation scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(0.7) is obtained.  相似文献   

14.
The spin glass transition of a quasi-1D organic-based magnet ([MnTPP][TCNE]) is explored using both ac and dc measurements. A scaling analysis of the ac susceptibility shows a spin glass transition near 4 K, with a viscous decay of the thermoremanent magnetization recorded above 4 K. We propose an extension to a fractal cluster model of spin glasses that determines the dimension of the spin clusters (D) ranging from approximately 0.8 to over 1.5 as the glass transition is approached. Long-range dipolar interactions are suggested as the origin of this low value for the apparent lower critical dimension.  相似文献   

15.
It has been shown over the last few years that the dynamics close to the glass transition is strongly heterogeneous, both by measuring the diffusion coefficient of tagged particles or by NMR studies. Recent experiments have also demonstrated that the glass transition temperature of thin polymer films can be shifted as compared to the same polymer in the bulk. We propose here first a thermodynamical model for van der Waals liquids, which accounts for experimental results regarding the bulk modulus of polymer melts and the evolution of the density with temperature. This model allows us to describe the density fluctuations in such van der Waals liquids. Then, by considering the thermally induced density fluctuations in the bulk, we propose that the 3D glass transition is controlled by the percolation of small domains of slow dynamics, which allows to explain the heterogeneous dynamics close to T g. We show then that these domains percolate at a lower temperature in the quasi-2D case of thin suspended polymer films and we calculate the corresponding glass transition temperature reduction, in quantitative agreement with experimental results of Jones and co-workers. In the case of strongly adsorbed films, we show that the strong adsorption amounts to enhance the slow domains percolation. This effect leads to 1) a broadening of the glass transition and 2) an increase of T g in quantitative agreement with experimental results. For both strongly and weakly adsorbed films, the shift in T g is given by a power law, the exponent being the inverse of that of the correlation length of 3D percolation. Received 21 March 2000 and Received in final form 4 December 2000  相似文献   

16.
We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.  相似文献   

17.
用分子动力学模拟方法研究了五种不同冷却速率对Lennard-Jones体系凝固过程中结构与动力学性质的影响。采用两种不同的方法来确定玻璃转变温度Tg,并且对结晶温度Tc、径向分布函数g(r)、均方位移函数MSD与扩散系数D、平均配位数进行比较分析。结果表明:冷却速率影响Lennard-Jones体系凝固过程中的结构。当使用足够高的冷却速率冷却时,体系发生玻璃化转变,而且冷却速率越快,玻璃转变温度越高;当冷却速率较小时,体系形成晶体,而且冷却速率越慢,结晶温度越高,结晶程度也越高。同时发现,冷却速率对扩散系数和平均配位数也有很大影响,二者在体系发生玻璃转变时都有一个缓变的过程,表明了过冷液相区的存在。  相似文献   

18.
Properties such as the glass transition temperature ( T(g)) and the diffusion coefficient of ultrathin polymeric films are shown to depend on the dimensions of the system. In this work, a hard-sphere molecular dynamics methodology has been applied to simulate such systems. We investigate the influence that substrates have on the behavior of thin polymer films; we report evidence suggesting that, depending on the strength of substrate-polymer interactions, the glass transition temperature for a thin film can be significantly lower or higher than that of the bulk.  相似文献   

19.
Experimental data obtained with emissive probes and Langmuir probes show that the plasma potential profile in the presheath scales as -ephi /T(e)= sqrt[(x(0) -x)/lambda ], consistent with ion flux conservation, and that the sheath consists of a transition region and an electron-free collisionless sheath with thicknesses scaling as lambda( 1/5)lambda (4/5 )(D) and lambda(D )(ephi/ T(e))(3 /4), respectively, where lambda is the ion-neutral collision length. Results support Rieman's presheath and transitional region model [Phys. Plasmas 4, 4158 (1997)]]. The potential drop over the presheath and transition sheath region were the order of T(e) /e and 2T(e )/3e, respectively, increasing with increasing pressure.  相似文献   

20.
The anisotropic frustrated three-dimensional (3D) XY model with disorder in the coupling constants is simulated as a model of a point disordered superconductor in an applied magnetic field. A finite size scaling analysis of the helicity modulus gives strong evidence for a finite temperature transition with isotropic scaling and the correlation length exponent nu=1.5+/-0.3, consistent with 3D gauge glass universality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号