首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
托马斯进动的发现对电子自旋概念的确立有重要意义.然而,其物理图像及结论多是采用洛伦兹变换进行连续微分推导而出,过程较为繁杂,掌握难度也较大,在原子物理学教学过程中很难描述.本文通过狭义相对论中长度在运动方向缩短的概念,从电子绕行原子实一周时,在原子实坐标系和电子随动坐标系中最终角度差的积分效应出发,非常简单的论证了1/...  相似文献   

2.
In 1913, É. Borel (1871–1956) considered the relativistic kinematic rotation of a body that arises in the course of its orbital motion. In order to determine the angular velocity of this rotation, Borel introduced the notion of a kinematic space and applied the Gauss-Bonnet formula for a sphere of a unit radius. However, at that time, his results did not find practical applications and, soon, were forgotten. After the discovery of electron spin by S.A. Goudsmit and G.E. Uhlenbeck in 1925, real interest in this phenomenon was rekindled, and it was considered once again by L.H. Thomas in 1926–1927, being termed the Thomas precession. The Thomas precession manifests itself mostly in optical phenomena.  相似文献   

3.
The solution of the Dirac equation for an electron in the field of a plane circularly polarized electromagnetic wave having an arbitrary intensity and a phase velocity v ph different from the speed of light c is obtained. This solution is shown to describe the previously unknown effect of electron spin precession that exceeds the known precession effects caused by radiative corrections by six and more orders of magnitude and opens new possibilities for control of the polarization of electrons and for realization of various resonance methods associated with the spin precession. The predicted effect is in agreement with symmetry principles; however, it disappears at v ph=c and is not described by the known Volkov solution.  相似文献   

4.
Coherent spin precession of electrons and excitons is observed in charge tunable InP quantum dots under the transverse magnetic field by means of time-resolved Kerr rotation. In a quantum dot doped by one electron, spin precession of the doped electron in the quantum dot starts out of phase with spin precession of the doped electrons in a GaAs substrate just after a trion is formed and persists for more than 2 ns even after the trion recombines. Simultaneously spin precession of a trion (hole) starts. Observation of spin precession of both a doped electron and a trion (hole) confirms creating coherent superposition of an electron and a trion as the initialization process of spin of doped electrons in quantum dots. In a neutral quantum dot, the exciton spin precession starts out of phase with spin precession of the doped electrons in a GaAs substrate and the precession frequency does not converge to 0 at the zero field limit. It contains the electron–hole exchange interaction and corresponds to the splitting between bright and dark excitons under the transverse magnetic field.  相似文献   

5.
Total precession (geodetic precession and frame dragging) depends on the velocity of each source of gravitation, which means that it depends on the choice of the coordinate system. We consider the latter as an anomaly specifically in the Gravity Probe B experiment, we investigated it and solved this anomaly. Thus, we proved that if our present expression for the geodetic precession is correct, then the frame dragging should be 25% less than its predicted value.  相似文献   

6.
7.
This paper presents the first experimental effort to explore the large scale 3-D flame instabilities of fire whirls, including the inclined flame revolution during the transition from a general pool fire to fire whirl, and the swirling flame precession in a quasi-steady fire whirl. The experimental medium-scale fire whirls were produced by a fixed-frame facility. Experimental observations indicate that flame revolution is an important flame instability during the formation of fire whirl, showing that the entire flame is inclined and revolves around the geometrical axis of symmetry with increasing angular velocity until the critical point, without the self-rotation of the flame. It is found that the inlet velocity fluctuates synchronously with the flame revolution. As soon as the fire whirl forms, the erect swirling flame starts to precess around the geometrical axis of symmetry. Analysis indicates that during flame precession the periodic fluctuations of inlet velocity disappear and a local annular external recirculation zone (ERZ) is produced outside the flame (vortex core), while the flow is upward inside. It is found that the inlet velocities are nearly constant within the continuous flame in order to maintain a stable generating eddy. A good linear correlation exists between the average inlet velocities and average ambient circulations for all fuel pan sizes. The precession frequency is relatively stable during one test. The frequencies of flame revolution and precession are both proportional to the average inlet velocity, and the corresponding Strouhal numbers are constants of 0.42 and 0.80, respectively. The flame revolves and precesses in the same direction as the self-rotation of the fire whirl flame in all tests. The flame revolution is related to the periodical fluctuations of inlet flow, while the flame precession is considered to be linked to the occurrence of ERZ in fire whirls.  相似文献   

8.
We consider the neutron-optical phenomena that emerge during the coherent interaction of a neutron with a sample when the neutron spin precesses in a magnetic field. As follows from general considerations, such an interaction gives rise to an extra precession phase, which is added to the Larmor precession phase. This phenomenon can be interpreted as a manifestation of the time delay due to a finite time of the neutron-sample interaction. The Larmor neutron spin precession with a constant frequency serves as a clock for measuring this time delay. We used such a clock to directly measure the difference between the neutron velocity in matter and its vacuum value. We also present the results of the first experiments in which Larmor clocks were used to measure the neutron tunneling time in the resonance of a quasi-bound state and the Bragg diffraction time. Prospects for further applications of the method are discussed.  相似文献   

9.
We study the way in which the geometry of the trapping potential affects the vortex velocity in a Bose-Einstein condensate confined by a toroidal trap. We calculate the vortex precession velocity through a simple relationship between such a velocity and the gradient of the numerically obtained vortex energy. We observe that our results correspond very closely to the velocity calculated through time evolution simulations. However, we find that the estimates derived from available velocity field formulas present appreciable differences. To resolve such discrepancies, we further study the induced velocity field, analyzing the effect of global features of the condensate on such a field and on the precession velocity.  相似文献   

10.
We report the discovery of 180° electron-spin precession in spin-polarized electron-reflection experiments on Fe films on Ag(001), the largest possible precession angle in a single electron reflection. Both experiments as a function of Fe film thickness and ab initio calculations show that the appearance of this ultimate spin precession depends with utmost sensitivity on the relaxation of the Fe surface layers during growth. Similar spin precession is also predicted for other ferromagnetic films.  相似文献   

11.
We address the precession of an ensemble of electron spins, each confined in a (In, Ga)As/GaAs self-assembled quantum dot. The quantum dot inhomogeneity is directly reflected in the precession of the optically oriented electron spins about an external magnetic field, which is subject to fast dephasing on a nanoseconds time scale. Proper periodic laser excitation allows synchronization of the electron spin precessions with the excitation cycle. The experimental conditions can be tailored such that eventually all (about a million) electron spins that are excited by the laser precess with a single frequency. In this regime the ensemble can be exploited during the single electron spin coherence times being in the microseconds range.  相似文献   

12.
The relativistic precession of the rotation axis of a spherical gyroscope is treated in the framework of monadic specification of the frame of reference. It is found that the precession in the comoving frame compensates the rotation of the frame of reference itself. An exact expression is derived for the angular velocity of precession for motion of a gyroscope in circular epiequatorial orbits in the Kerr field. The results are compared with the approximate expression obtained by Schiff. Numerical examples are considered.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 64–68, March, 1981.  相似文献   

13.
We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.  相似文献   

14.
The influence of combustion effect on unsteady vortex structure in the form of precessing vortex core was studied using the non-intrusive method of laser Doppler anemometry and special procedure of extracting the non-axisymmetric mode of flow fluctuations. The studies show that combustion has a significant effect on the parameters of such a core, reducing the amplitude (vortex deviation from the burner center) and increasing precession frequency. At the same time, the acoustic sensors detect almost an order reduction in the level of pressure pulsations generated by the precessing vortex core. Moreover, distributions of tangential velocity fluctuations and cross-correlation analysis show that vortex precession is quite pronounced even under the combustion conditions, bringing a significant coherent component to distributions of velocity fluctuations.  相似文献   

15.
A new experiment named MTV-G, probing a large electron spin-precession due to a possible strong gravitational field, which predicted by large extra dimension model, is started at TRIUMF from 2011. In an electron-nuclear scattering experiment, a strong gravitational field is tested as a large spin precession effect caused by geodetic precession predicted by general relativity theory as a result of a warped space-time around nuclei. Experimental design using spin polarized electron source and Mott-spin analyzer, commissioning experiment and the preliminary results are described.  相似文献   

16.
The conditions for parametric excitation of flexural vibrations of a domain wall (DW) are determined in the case where the DW moves under the action of a uniform dc magnetic field whose strength exceeds the Walker critical value (in the spin precession regime). Vibrations are excited when uniform precession caused by the magnetic field during DW translational motion breaks down. Using numerical methods, it is shown that steady-state large-amplitude vibrations can occur and that these vibrations significantly affect the average DW velocity  相似文献   

17.
The paper determines a limit energy under which hypersymmetry (HySy) is broken. According to gauge theories, interaction mediating spin-0 bosons must be massless. The theory of HySy predicted massive intermediate bosons. Hypersymmetry field rotation, described in this paper, justifies the mass of the HySy mediating boson. The mass of intermediate bosons must arise from dynamical spontaneous breaking of the group of HySy. HySy rotation is performed in the velocity-dependent D field. The derived rotation of the field is defined by the spontaneous symmetry breaking and precession of the velocity v around its third projection in the D field (that produced the mass of the field's bosons). The latter represents the real- and effective velocities of a boson-emitting particle in the direction towards a target particle. The mass of the discussed (fictitious) Goldstone bosons can be removed by the unitarity gauge condition through Higgs (BEH) mechanism. According to the simultaneous presence of a Standard Model (SM) interaction's symmetry group and the (beyond SM) HySy group, their bosons should be transformed together. Spontaneous breakdown of HySy may allow performing a transformation that does not influence the SM physical state of the investigated system. The paper describes a field transformation that eliminates the mass of the intermediate bosons, rotates the SM- and HySy bosons’ masses together while leaving the SM bosons intact. The result is an angle that characterises the HySy by a precession mechanism of the velocity that generates the field. In contrast to the known SM intermediate bosons, the HySy intermediate bosons have no fixed mass. The mass of the HySy intermediate bosons (that appear as quanta of a velocity-dependent gauge field D) depends on the relative velocity of the particles whose interaction they mediate. So, the derived precession angle is a function of that velocity.  相似文献   

18.
We numerically study properties of the dynamics of vortices in nonrotating Bose-Einstein condensates in the Thomas-Fermi regime. On the one hand, we compute the vortex energy as a function of its position and we predict, using the expression of the Magnus force, the vortex precession velocity. On the other hand, we calculate the temporal evolution of the vortex-state and test the accuracy of the previous prediction. We also investigate the validity of analytical formulae of this velocity involving the healing length. In addition, we analyze the velocity field and the angular momentum and we compare them to available analytical expressions.  相似文献   

19.
We show that there exists critical trap aspect ratios for a trapped Bose-Einstein condensate with dipole-dipole interactions. We discuss the role of critical trap aspect ratios on both the critical angular velocity above which a vortex is energetically favorable and the precession velocity of an off-axis vortex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号