首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the magnetic excitations in Ca2-xSrxRuO4, x=0.52 and 0.62, which exhibit an anomalously high susceptibility and heavy mass Fermi liquid behavior. Our inelastic neutron scattering experiments reveal strongly enhanced magnetic fluctuations around an incommensurate wave-vector (0.22,0,0) pointing to a magnetic instability. The magnetic fluctuations show no correlation in the c direction and also along the RuO2 planes the signal is extremely broad, Deltaq=0.45 A(-1). These fluctuations can quantitatively account for the high specific heat coefficient and relate to the high macroscopic susceptibility. The magnetic scattering is attributed to the d(xy) band, the active band for spin triplet superconductivity in Sr2RuO4.  相似文献   

2.
The magnetic excitations in Ca1.8Sr0.2RuO4 were studied across the metamagnetic transition and as a function of temperature using inelastic neutron scattering. At low temperature and low magnetic field the magnetic response is dominated by a complex superposition of incommensurate antiferromagnetic fluctuations. Upon increasing the magnetic field across the metamagnetic transition, paramagnon and finally well-defined magnon scattering is induced, partially suppressing the incommensurate signals. The high-field phase in Ca1.8Sr0.2RuO4, therefore, has to be considered as an intrinsically ferromagnetic state stabilized by the magnetic field.  相似文献   

3.
We present a first-principles study of spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. For nearly degenerate bands, spin-orbit coupling leads to a dramatic change of the Fermi surface with respect to nonrelativistic calculations; as evidenced by the comparison with experiments on Sr2RhO4, it cannot be disregarded. For Sr2RuO4, the Fermi surface modifications are more subtle but equally dramatic in the detail: Spin-orbit coupling induces a strong momentum dependence, normal to the RuO2 planes, for both orbital and spin character of the low-energy electronic states. These findings have profound implications for the understanding of unconventional superconductivity in Sr2RuO4.  相似文献   

4.
很多实验证实 Sr2 Ru O4 超导体具有自旋三重态 ,其序参数存有结点的 f波对称结构。我们考虑到粗糙的界面势垒散射 ,利用 f波超导模型 ,研究正常金属 - Sr2 Ru O4 超导结中的隧道谱与散粒噪声。所得结果既不同于传统的 s波超导 ,亦不同于具有 d波对称结构的高 Tc铜氧化物超导体。  相似文献   

5.
The anisotropy of the magnetic incommensurate fluctuations in Sr2RuO4 has been studied by inelastic neutron scattering with polarized neutrons. We find a sizable enhancement of the out-of-plane component by a factor of 2 for intermediate energy transfer, which appears to decrease for higher energies. Our results qualitatively confirm calculations of the spin-orbit coupling, but the experimental anisotropy and its energy dependence are weaker than predicted.  相似文献   

6.
We report angle-resolved photoelectron spectroscopy results of the Fermi surface of Ca1.5Sr0.5RuO4, which is at the boundary of magnetic/orbital instability in the phase diagram of the Ca-substituted Sr ruthenates. Three t(2g) energy bands and the corresponding Fermi surface sheets are observed, which are also present in the Ca-free Sr2RuO4. We find that while the Fermi surface topology of the alpha,beta (d(yz,zx)) sheets remains almost the same in these two materials, the gamma (d(xy)) sheet exhibits a holelike Fermi surface in Ca1.5Sr0.5RuO4 in contrast to being electronlike in Sr2RuO4. Our observation of all three volume conserving Fermi surface sheets clearly demonstrates the absence of orbital-selective Mott transition, which was proposed theoretically to explain the unusual transport and magnetic properties in Ca1.5Sr0.5RuO4.  相似文献   

7.
The unusual superconducting state in Sr(2)RuO(4) has long been viewed as being analogous to a superfluid state in liquid (3)He. Nevertheless, calculations based on this odd-parity state are presently unable to completely reconcile the properties of Sr(2)RuO(4). Using a self-consistent quantum many-body scheme that employs realistic parameters, we are able to model several signature properties of the normal and superconducting states of Sr(2)RuO(4). We find that the dominant component of the model superconducting state is of even parity and closely related to superconducting state for the high-T(c) cuprates although a smaller odd-parity component is induced by spin-orbit coupling. This mixed pairing state gives a more complete representation of the complex phenomena measured in Sr(2)RuO(4).  相似文献   

8.
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking fourfold oscillations of the density of states reflecting the superconducting gap structure have been resolved for the first time. We also obtained strong evidence of multiband superconductivity and concluded that the superconducting gap in the active band, responsible for the superconducting instability, is modulated with a minimum along the [100] direction.  相似文献   

9.
101Ru-Knight shift (101K) in the spin-triplet superconductor Sr2RuO4 was measured under magnetic fields parallel to the c axis (perpendicular to the RuO2 plane), which is the promising superconducting (SC) d-vector direction in a zero field. We succeeded in measuring K(c) in the field range from 200 to 1200 Oe and at temperatures down to 80 mK, using nuclear-quadrupole-resonance spectra. We found that (101)K(c) is invariant with respect to the field and temperature on passing through H(c2) and T(c) above 200 Oe. This indicates that the spin susceptibility along the c axis does not change in the SC state, at least, in the field greater than 200 Oe. The results imply that the SC d vector is in the RuO2 plane when the magnetic field is applied to the c axis.  相似文献   

10.
Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn5 (T_(c)=2.3 K). Superconductivity develops from a state with slow (variant Planck's over 2piGamma=0.3+/-0.15 meV) commensurate [Q_(0)=(1/2,1/2,1/2)] antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wave vector in CeCoIn5 is the same as CeIn3 but differs from the incommensurate wave vector measured in antiferromagnetically ordered CeRhIn5. A sharp spin resonance (variant Planck's over 2piGamma<0.07 meV) at variant Planck's over 2piomega=0.60+/-0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Delta(q+Q0)=-Delta(q).  相似文献   

11.
We have revealed the phase diagram of Ca2-xSrxRuO4: the quasi-two-dimensional Mott transition system that connects the Mott insulator Ca2RuO4 with the spin-triplet superconductor Sr2RuO4. Adjacent to the metal/nonmetal transition at x approximately 0.2, we found an antiferromagnetically correlated metallic region where non-Fermi-liquid behavior in resistivity is observed. Besides this, the critical enhancement of susceptibility toward the region boundary at x(c) approximately 0.5 suggests the crossover of magnetic correlation to a nearly ferromagnetic state, which evolves into the spin-triplet superconductor Sr2RuO4.  相似文献   

12.
We study the Andreev bound states in a Josephson junction between a singlet and a triplet superconductors. Because of the mismatch in the spin symmetries of pairing, the energies of the spin-up and -down quasiparticles are generally different. This results in imbalance of spin populations and net spin accumulation at the junction in equilibrium. This effect can be detected using probes of local magnetic field, such as the scanning SQUID, Hall, and Kerr probes. It may help to identify potential triplet pairing in (TMTSF)2X, Sr2RuO4, and oxypnictides.  相似文献   

13.
Electronic structures of the 4d transition-metal oxide compound Sr2RhO4 are investigated by angle-resolved photoemission spectroscopy and density-functional electronic structure calculations. In the measured Fermi surfaces (FS) of Sr2RhO4, the xy-band FS sheet expected from the well-established results of the FS of Sr2RuO4 is missing, the volume of which should be different only by one additional electron for Sr2RhO4. The apparent contradiction is resolved by a careful analysis of the band structure where the rotation of octahedra results in the hybridization of e(g) and t(2g) states and thus plays a key role in the determination of the electronic structure near EF. The modification of the FS structure due to the distorted lattice is related to the charge transfer among the orbital states and suggested to be relevant to the metal-insulator transition in Ca(2-x)Sr(x)RuO4.  相似文献   

14.
We consider the stability conditions for half-quantum vortices in a quasi-two-dimensional p{x}+ip{y} superconductor (such as Sr2RuO4 is believed to be). The predicted exotic nature of these excitations has recently attracted much attention, but they have not been observed yet. We emphasize that an isolated half-quantum vortex has a divergent energy cost in the bulk due to its unscreened spin current, which requires two half-quantum vortices with opposite spin winding to pair. We show that the stability of such a pair is enhanced when the ratio of spin superfluid density to superfluid density rho{sp}/rho{s} is small. We propose using various mesoscopic geometries to stabilize and observe these exotic excitations.  相似文献   

15.
Detailed neutron scattering measurements of YBa2Cu3O6.95 found that the resonance peak and incommensurate magnetic scattering induced by superconductivity represent the same physical phenomenon: two dispersive branches that converge near 41 meV and the in-plane wave vector q(AF)=(pi/a,pi/a) to form the resonance peak. One branch has a circular symmetry around q(AF) and quadratic downward dispersion from approximately 41 meV to the spin gap of 33+/-1 meV. The other, of lower intensity, disperses from approximately 41 meV to at least 55 meV. Our results exclude a quartet of vertical incommensurate rods in q-omega space expected from spin waves produced by dynamical charge stripes as an origin of the observed incommensurate scattering in optimally doped YBCO.  相似文献   

16.
We report that the quasi-two-dimensional Fermi-liquid behavior of the spin-triplet superconductor Sr2RuO4 breaks down in the vicinity of the critical impurity concentration for the onset of magnetic order induced by nonmagnetic Ti4+ impurities. The non-Fermi-liquid behavior is interpreted in terms of the two-dimensional antiferromagnetic fluctuations, which arise mainly from the nesting within one of the Fermi-surface sheets. We argue against the main role of such magnetic fluctuations in the pairing mechanism.  相似文献   

17.
Low temperature magnetic, thermal, and transport measurements in Ca2-xSrxRuO4 clarify the appearance of a cluster glass phase, after the evolution of a nearly ferromagnetic heavy-mass Fermi liquid from the spin-triplet superconductor Sr2RuO4. As the Mott transition is approached across a 2nd-order structural transition, both the magnetization and specific heat decrease considerably while the transport scattering rate diverges. A metamagnetic transition to a highly spin polarized state, with a local moment S=1/2, is observed. We argue that an orbital rearrangement with Ca substitution changes itinerant ferromagnetism to antiferromagnetism of localized moments.  相似文献   

18.
A neutron scattering study of heavily hole-overdoped superconducting KFe2As2 revealed a well-defined low-energy incommensurate spin fluctuation at [π(1 ± 2 δ),0] with δ = 0.16. The incommensurate structure differs from the previously observed commensurate peaks in electron-doped AFe2As2 (A = Ba, Ca, or Sr) at low energies. The direction of the peak splitting is perpendicular to that observed in Fe(Te,Se) or in Ba(Fe,Co)2As2 at high energies. A band structure calculation suggests interband scattering between bands around the Γ and X points as an origin of this incommensurate peak. The perpendicular direction of the peak splitting can be understood within the framework of multiorbital band structure. The results suggest that spin fluctuation is more robust in hole-doped than in electron-doped samples, which can be responsible for the appearance of superconductivity in the heavily hole-doped samples.  相似文献   

19.
The superconducting gap function of Sr2RuO4 was investigated by means of quasiparticle reflection and transmission at the normal conductor-superconductor interface of Sr2RuO4-Pt point contacts. We found two distinctly different types of dV/dI vs V spectra either with a double-minimum structure or with a zero-bias conductance anomaly. Both types of spectra are expected in the limit of high and low transparency, respectively, of the interface barrier between a normal metal and a spin-triplet superconductor. Together with the temperature dependence of the spectra this result strongly supports a spin-triplet superconducting order parameter for Sr2RuO4.  相似文献   

20.
A model for explaining incommensurate spin modulation observed in La2?xSrxCuO4 is proposed without assuming stripe formation. In this model, all features of the observed spin textures in the entire doping range are associated only with the geometrical relations for the square lattice and with the competition between various forms of ordering of Sr ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号