首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DFT calculations with the UX3LYP hybrid functional and a medium-sized 6-311++G(d,p) basis set were performed to examine the gas-phase structure of paramagnetic (S = 1) six-coordinate complexes [Ni(NH3)n(H2O)(6-n)](2+), 0 < or = n < or = 6. Significant interligand hydrogen bonding was found in [Ni(H2O)6](2+), but this becomes much less significant as NH3 replaces H2O in the coordination sphere of the metal. Bond angles and bond lengths obtained from these calculations compare reasonably well with available crystallographic data. The mean calculated Ni-O bond length in [Ni(H2O)6](2+) is 2.093 A, which is 0.038 A longer than the mean of the crystallographically observed values (2.056(22) A, 108 structures) but within 2sigma of the experimental values. The mean calculated Ni-N bond length in [Ni(NH3)6](2+) is 2.205(3) A, also longer (by 0.070 A) than the crystallographically observed mean (2.135(18) A, 7 structures). Valence bond angles are reproduced within 1 degree. The successive replacement of H2O by NH3 as ligands results in an increase in the stabilization energy by 7 +/- 2 kcal mol(-1) per additional NH3 ligand. The experimentally observed increase in the lability of H2O in Ni(II) as NH3 replaces H2O in the coordination sphere is explained by an increase in the Ni-OH2 bond length. It was found from a natural population analysis that complexes with the highest stabilization energies are associated with the greatest extent of ligand-to-metal charge transfer, and the transferred electron density is largely accommodated in the metal 4s and 3d orbitals. An examination of the charge density rho bcp and the Laplacian of the charge density nabla(2)rho(bcp) at the metal-ligand bond critical points (bcp) in the series show a linear correlation with the charge transferred to the metal. Values of nabla(2)rho(bcp) are positive, indicative of a predominantly closed-shell interaction. The charge transferred to the metal increases as n, the number of NH3 ligands in the complex, increases. This lowers the polarizing ability of the metal on the ligand donors and the average metal-ligand bond length increases, resulting in a direct correlation between the dissociation energy of the complexes and the reciprocal of the average metal-ligand bond length. There is a strong correlation between the charge transferred to the metal and experimental DeltaH values for successive replacement of H2O by NH3, but a correlation with stability constants (log beta values) breaks when n = 5 and 6, probably because of entropic effects in solution. Nevertheless, DFT calculations may be a useful way of estimating the stability constants of metal-ligand systems.  相似文献   

2.
The equilibrium geometries of the molybdenum oxo/peroxo compounds MoOn(O2)3-n and the related complexes [MoOn(O2)3-n(OPH3)] and [MoOn(O2)3-n(OPH3)(H2O)] (n = 0-3) have been calculated using gradient-corrected density-functional theory at the B3LYP level. The structures of the peroxo complexes with ethylene ligands [MoOn(O2)3-n(C2H4)] and [MoOn(O2)3-n(OPH3)(C2H4)] (n = 1, 2) where ethylene is directly bonded to the metal have also been optimized. Calculations of the metal-ligand bond-dissociation energies show that the OPH3 ligand in [MoOn(O2)3-n(OPH3)] is much more strongly bound than the ethylene ligand in [MoOn(O2)3-n(C2H4)]. This makes the substitution of phosphane oxide by olefins in the epoxidation reaction unlikely. An energy-minimum structure is found for [MoO(O2)2(OPH3)(C2H4)], for which the dissociation of C2H4 is exothermic with D0 = -5.2 kcal/mol. The reaction energies for the perhydrolysis of the oxo complexes with H2O2 and the epoxidation of ethylene by the peroxo complexes have also been calculated. The peculiar stability of the diperoxo complex [MoO(O2)2(OPH3)(H2O)] can be explained with the reaction energies for the perhydrolysis of [MoOn(O2)3-n(OPH3)(H2O)]. The first perhydrolysis step yielding the monoperoxo complex is less exothermic than the second perhydrolysis reaction, but the further reaction with H2O2 yielding the unknown triperoxo complex is clearly endothermic. CDA analysis of the metal-ethylene bond shows that the binding interactions are mainly caused by charge donation from the ligand to the metal.  相似文献   

3.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

4.
At high magnetic fields the 128.8 MHz (195)Pt NMR of all the species in the series [PtCl(n)(H(2)O)(6-n)](4-n) (n = 2-6) display unique (35/37)Cl isotope effects resulting in a unique 'fine-structure' of each individual resonance, which constitutes an unambiguous spectroscopic 'fingerprint' characteristic of the structure of the octahedral platinum(iv) complex, provided (195)Pt NMR are recorded at optimum magnetic field homogeneity and carefully controlled temperature (293 ± 0.1 K). The detailed (195)Pt resonance fine-structure observed experimentally can readily be accounted for by an isotopologue and isotopomer model for each complex, showing particularly noticeable differences between stereoisomer pairs such as the cis/trans- and fac/mer-complexes. Moreover partial isotopic (18)O enrichment of the coordinated water molecules in the series [Pt(35/37)Cl(n)(H(2)(16/18)O)(6-n)](n-2) (n = 2-6) confirms this model. This technique can thus be considered a novel, direct spectroscopic method of chemical speciation of appropriate platinum(iv) complexes in solution without reference to accurate chemical shifts of authentic members of such a series. These effects are interpreted qualitatively in terms of the high sensitivity of (195)Pt NMR shielding to very small and subtle Pt-(35/37)Cl and Pt-(16/18)OH(2) bond displacements. Preliminary work shows this also applied to the corresponding bromido-complexes.  相似文献   

5.
Two bimetallic assemblies, [Ni(tn)(2)](2)[Cr(CN)(5)(NO)]OH.H(2)O (1) and [Ni(tn)(2)](2)[Co(CN)(6)]NO(3).2H(2)O (2) (tn = 1,3-diaminopropane), have been prepared and structurally and magnetically characterized. Crystal data for 1 (2): space group P1 (P1), a = 8.698(3) (8.937(2)) A, b = 10.001(2) (9.863(1)) A, c = 10.158(2) (10.064(1)) A, alpha = 87.40(2) (86.064(10)) degrees, beta = 65.10(2) (65.489(10)) degrees, gamma = 81.63(2) (81.572(12)) degrees and Z = 1 (1). Both structures consist of two-dimensional grid-like polycations containing Ni-N triple bond C-M linkages (M = Cr or Co) and counteranions (OH, NO(3)). Magnetic studies of 1 showed that the complex displays a metamagnetic behavior originating from intralayer ferromagnetic and interlayer antiferromagnetic interactions. Long-range antiferromagnetic ordering was observed at T(N) = 3.3 K. Complex 2 exhibits intramolecular ferromagnetic interactions through the diamagnetic N triple bond C-Co-N triple bond C bridges, owing to superexchange involving the empty d(sigma) orbital of the diamagnetic Co(III) ion.  相似文献   

6.
Enzymes in the oxygen-activating class of mononuclear non-heme iron oxygenases (MNOs) contain a highly conserved iron center facially ligated by two histidine nitrogen atoms and one carboxylate oxygen atom that leave one face of the metal center (three binding sites) open for coordination to cofactor, substrate, and/or dioxygen. A comparative family of [Fe(II/III)(N(2)O(n))(L)(4-n))](±x), n = 1-3, L = solvent or Cl(-), model complexes, based on a ligand series that supports a facially ligated N,N,O core that is then modified to contain either one or two additional carboxylate chelate arms, has been structurally and spectroscopically characterized. EPR studies demonstrate that the high-spin d(5) Fe(III)g = 4.3 signal becomes more symmetrical as the number of carboxylate ligands decreases across the series Fe(N(2)O(3)), Fe(N(2)O(2)), and Fe(N(2)O(1)), reflecting an increase in the E/D strain of these complexes as the number of exchangeable/solvent coordination sites increases, paralleling the enhanced distribution of electronic structures that contribute to the spectral line shape. The observed systematic variations in the Fe(II)-Fe(III) oxidation-reduction potentials illustrate the fundamental influence of differential carboxylate ligation. The trend towards lower reduction potential for the iron center across the [Fe(III)(N(2)O(1))Cl(3)](-), [Fe(III)(N(2)O(2))Cl(2)](-) and [Fe(III)(N(2)O(3))Cl](-) series is consistent with replacement of the chloride anions with the more strongly donating anionic O-donor carboxylate ligands that are expected to stabilize the oxidized ferric state. This electrochemical trend parallels the observed dioxygen sensitivity of the three ferrous complexes (Fe(II)(N(2)O(1)) < Fe(II)(N(2)O(2)) < Fe(II)(N(2)O(3))), which form μ-oxo bridged ferric species upon exposure to air or oxygen atom donor (OAD) molecules. The observed oxygen sensitivity is particularly interesting and discussed in the context of α-ketoglutarate-dependent MNO enzyme mechanisms.  相似文献   

7.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

8.
The photochemistry of iron azido complexes is quite challenging and poorly understood. For example, the photochemical decomposition of [Fe(III)N(3)(cyclam-ac)]PF(6) ([1]PF(6)), where cyclam-ac represents the 1,4,8,11-tetraazacyclotetradecane-1-acetate ligand, has been shown to be wavelength-dependent, leading either to the rare high-valent iron(V) nitrido complex [Fe(V)N(cyclam-ac)]PF(6) ([3]PF(6)) after cleavage of the azide N(α)-N(β) bond, or to a photoreduced Fe(II) species after Fe-N(azide) bond homolysis. The mechanistic details of this intriguing reactivity have never been studied in detail. Here, the photochemistry of 1 in acetonitrile solution at room temperature has been investigated using step-scan and rapid-scan time-resolved Fourier transform infrared (FTIR) spectroscopy following a 266 nm, 10 ns pulsed laser excitation. Using carbon monoxide as a quencher for the primary iron-containing photochemical product, it is shown that 266 nm excitation of 1 results exclusively in the cleavage of the Fe-N(azide) bond, as was suspected from earlier steady-state irradiation studies. In argon-purged solutions of [1]PF(6), the solvent-stabilized complex cation [Fe(II)(CH(3)CN)(cyclam-ac)](+) (2red) together with the azide radical (N(3)(.)) is formed with a relative yield of 80%, as evidenced by the appearance of their characteristic vibrational resonances. Strikingly, step-scan experiments with a higher time resolution reveal the formation of azide anions (N(3)(-)) during the first 500 ns after photolysis, with a yield of 20%. These azide ions can subsequently react thermally with 2red to form [Fe(II)N(3)(cyclam-ac)] (1red) as a secondary product of the photochemical decomposition of 1. Molecular oxygen was further used to quench 1red and 2red to form what seems to be the elusive complex [Fe(O(2))(cyclam-ac)](+) (6).  相似文献   

9.
A robust reversed phase ion-pairing RP-HPLC method has been developed for the unambiguous speciation and quantification of all possible homoleptic and heteroleptic octahedral platinum(IV) [PtCl(6-n)Br(n)](2-) (n=0-6) as well as the corresponding platinum(II) [PtCl(4-n)Br(n)](2-) (n=0-4) complex anions using UV/Vis detection. High resolution (195)Pt NMR in more concentrated solutions of these Pt(II/IV) complexes (≥50 mM) served to validate the chromatographic peak assignments, particularly in the case of the possible stereoisomers of Pt(II/IV) complex anions. By means of IP-RP-HPLC coupled to ICP-MS or ICP-OES it is possible to accurately determine the relative concentrations of all possible Pt(II/IV) species in these solutions, which allows for the accurate determination of the photometric characteristics (λ(max) and ?) of all the species in this series, by recording of the UV/Vis absorption spectra of all eluted species, using photo-diode array, and quantification with ICP-MS or ICP-OES. With this method it is readily possible to separate and estimate the concentrations of the various stereoisomers which are present in these solutions at sub-millimolar concentrations, such as cis- and trans-[PtCl(4)Br(2)](2-), fac- and mer-[PtCl(3)Br(3)](2-) and cis- and trans-[PtCl(2)Br(4)](2-) for Pt(IV), and cis- and trans-[PtCl(2)Br(2)](2-) in the case of Pt(II). All mixed halide Pt(II) and Pt(IV) species can be separated and quantified in a single IP-RP-HPLC experiment, using the newly obtained photometric molar absorptivities, ?, determined herein at given wavelengths.  相似文献   

10.
Koo JE  Kim DH  Kim YS  Do Y 《Inorganic chemistry》2003,42(9):2983-2987
Cyano-bridged homometallic complex [Ni(baepn)(CN)](n)(ClO(4))(n)(1) and bimetallic complex [Ni(baepn)](2)(n)[Fe(CN)(6)](n)(H(2)O)(8)(n)(2) [baepn = N,N'-bis(2-aminoethyl)-1,3-propanediamine] were synthesized and characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 9.560(3) A, b = 10.700(3) A, c = 14.138(9) A, beta = 90.18(6) degrees, and Z = 4; 2 crystallizes in the monoclinic space group P2(1)/c with a = 8.951(2) A, b = 13.672(3) A, c = 14.392(3) A, beta = 98.906(4) degrees, and Z = 4. The complex 1 has one-dimensional structure whose chain vector runs along the b axis with baepn ligands and perchlorate anions alternately arranged up and down in the c direction. The antiferromagnetic nature of 1 was explained in terms of the infinite chain model and Haldane gap, giving g = 2.33, J = -29.4 cm(-1), and the magnitude of Haldane gap E(g) = 5.22 K. The complex 2 that constitutes the first example of 2-D bimetallic assembly of Ni(II) ion and ferrocyanide anion is composed of the neutral layers based on the [Ni(4)Fe(4)] square grid spanning in the bc plane. For 2, the analysis with the Curie-Weiss law in 2-300 K range results in THETA = 0.200 K and the magnetism was explained in terms of the ability of ferrocyanide in the -Ni-NC-Fe-CN-Ni unit to promote ferromagnetic Ni-Ni interaction.  相似文献   

11.
The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.  相似文献   

12.
Reaction of the [Ni(9)C(CO)(17)](2-) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), as well as the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5. Three of the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) anions (n=4-6) have been structurally characterized in their [NMe(3)(CH(2)Ph)](4)[H(2)Ni(30)C(4)(CO)(34)(CdCl)(2)]2 COMe(2), [NEt(4)](5)[HNi(30)C(4)(CO)(34)(CdCl)(2)]2 MeCN and [NMe(4)](6)[Ni(30)C(4)(CO)(34)(CdCl)(2)]6 MeCN salts, respectively. All three anions display almost identical geometries and bonding parameters, probably because charge effects are minimized by delocalization over such a large metal carbonyl anion. Moreover, the Ni(30)C(4) core in these Ni-Cd carbide clusters is identical within experimental error to those present in the [HNi(34)C(4)(CO)(38)](5-) and [Ni(35)C(4)(CO)(39)](6-) species, suggesting that the stepwise assembly of their nickel carbide cores may represent a general pathway of growth of nickel polycarbide clusters. The fact that the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-)(n=4-6) anions display two valence electrons more than the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6) species has been rationalized by extended Hückel molecular orbital (EHMO) analysis.  相似文献   

13.
The synthesis and characterization of [Ni(BCE)] and [Cu(BCE)] (where BCE = bis(3-chloroacetylacetone)ethylenediimine) are described. The coordination geometry of [Ni(BCE)] was determined by X-ray crystallography. It was found to be planar and four coordinate in the solid state. The electrochemical properties of M(Chel), where M = Co(II), Ni(II) and Cu(II), and Chel = BAE (bis(acetylacetone)ethylenediimine), BBE = bis(benzoylacetone)ethylenediimine, BFE (bis(1,1,1-triflouroacetylacetone) ethylenediimine and BCE ligands were investigated in DMF and DMSO as solvents. The oxidation potentials changed from left to right in the periodic table in the trend: Co < Ni < Cu, while the reduction potentials changed according to the trend: Ni > Co > Cu. The oxidation potentials of M(II) to M(III) (M = Ni and Cu) increased according to the Schiff base ligands in the trend: BAE < BBE < BCE < BFE, while the reduction potentials followed a reverse trend: BAE > BBE > BCE > BFE. The oxidation potentials of M(II) to M(III) increased according to the solvent in the trend: DMSO < DMF.  相似文献   

14.
采用密度泛函理论方法探讨了取代Mo原子对[W6-nMonO19]2-,[Nb6-nMonO19]p-和[Ta6-nMonO19]p-体系的M—Ot(M=W,Nb,Ta)键的活化作用.计算结果表明,随着取代Mo原子数的增多,[M6-nMonO19]2-(M=W,Nb,Ta)中M—Ot键的键能逐渐减小,因此Mo原子的引入使M—Ot键活化.在[W6-nMonO19]2-中,Mo—Ot键的键能小于W—Ot键的键能,因此,Mo—Ot键比W—Ot键易断裂,与实验结果一致.而在[Nb6-nMonO19]p-和[Ta6-nMonO19]p-体系中,Mo—Ot键的键能大于M—Ot(M=Nb,Ta)键的键能.Nb和Ta原子的端氧Ot的电荷大于Mo原子的端氧Ot的电荷,初步预测,当[Nb6-nMonO19]p-和[Ta6-nMonO19]p-与有机胺反应时,Nb—Ot和Ta—Ot键优先断裂,易与有机胺的氮原子成键.  相似文献   

15.
The reversible complexation of the pentaammine(pyridine-2-carboxylato)cobalt(III) ion [N5Co{O2C-(2)-C5H4 N}]2+ [N5=5HN3 and tetraethylenepentaammine (tetren)] with NiIIL(OH2)6-n [L=H2O (N5=tetren); L=bipy, ida2- (iminodiacetate) and nta3- (nitrilotriacetate), N5=5NH3 and tetren] has been investigated by the stopped-flow technique at 20-40 degC, and I= 0.3mol dm-3. At 25degC, the rate constants, kf(dm3 mol-1s-1), DeltaH(kJmol-1) and DeltaS(JK-1mol-1) for the formation of the ternary complexes [(tetren)-CoIII{O2C-(2)-C5H4N} NiIIL(OH2)6-n] are as follows: L=H2O, 530+9, 53+2, -15+7, respectively; L=bipy, 640+30, 37+3, -65+9; L=ida2-, 3900+100, 47+3, -18+11; L=nta3-, 10200+400, 49+1, −2+2. Nickel(II), in the ternary complexes, is chelated by the free pyridyl-N and the carboxylato moiety of the pyridine-2-carboxylate bound to the cobalt centre. The formation rate constant (kf) and the associated activation parameters are relatively insensitive to the N5 moieties for a given ligand L; kf increased in the order: Ni(OH2)62+Ni(bipy)(OH2)42+ Ni(ida)(OH2)3 (nta)(OH2)2-. Data analysis indicated that the mechanism shifted from the dissociative interchange (Id) to the chelation-controlled one, with the decrease of the available sites for coordination in NiIIL(OH2)6−n. The rate constants (kr) for the dissociation of [N5CoIII{O2C-(2)-C5 H4N}NiIIL(OH2) 6-(n+2)] to the parent reactants indicated steric acceleration [krL(5NH3) <krL(tetren)] and followed the trend: krNi(nta)->kr Ni(ida) >krNi(bipy)2+ for both pentaammine substrates. The chelate ring opening rate constants for the ternary complexes were estimated, from which it was apparent that the tetren envelope of cobalt(III) exerted relatively greater steric pressure as compared with 5NH3 in favouring opening up of the chelate ring. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
By means of hybrid method of the density functional B3LYP with 6-31G(d) basis set we carried out calculation of geometric parameters of Co(II), Co(III), Ni(II) and Cu(II) complexes with macrocyclic ligand formed at the template processes in the systems M(II)-dithiooxamide-acetone with NNSS-coordination of donor centers. Atomic coordinates, bond lengths, bond angles and dihedral angles in the complexes with metallochelate node MN2S2 are listed. In the cases of Ni(II) and Cu(II) this chelate node is practically planar while in the case of Co(II) is tetrahedral. An additional six-membered metallocycle formed as a result of template “stitching” is screwed and turned by enough significant angle relative to five-membered rings.  相似文献   

17.
A series of mononuclear, octahedral first-row transition metal ion complexes mer-[M(II)L0(2)](PF6)2 containing the tridentate neutral ligand 2,6-bis[1-(4-methoxyphenylimino)ethyl]pyridine (L0) and a Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II) ion have been synthesized and characterized by X-ray crystallography. Cyclic voltammetry and controlled potential coulometry show that each dication (except those of Cu(II) and Zn(II)) can be reversibly one-electron-oxidized, yielding the respective trications [M(III)L0(2)]3+, and in addition, they can be reversibly reduced to the corresponding monocations [ML2]+ and the neutral species [ML2]0 by two successive one-electron processes. [MnL2]PF6 and [CoL2]PF6 have been isolated and characterized by X-ray crystallography; their electronic structures are described as [Mn(III)L1(2)]PF6 and [Co(I)L0(2)]PF6 where (L1)1- represents the one-electron-reduced radical form of L0. The electronic structures of the tri-, di-, and monocations and of the neutral species have been elucidated in detail by a combination of spectroscopies: UV-vis, NMR, X-band EPR, Mossbauer, temperature-dependent magnetochemistry. It is shown that pyridine-2,6-diimine ligands are noninnocent ligands that can be coordinated to transition metal ions as neutral L0 or, alternatively, as monoanionic radical (L1)1-. All trications are of the type [M(III)L0(2)]3+, and the dications are [M(II)L0(2)]2+. The monocations are described as [Mn(III)L1(2)]+ (S = 0), [Fe(II)L0L1]+ (S = 1/2), [Co(I)L0(2)]+ (S = 1), [Ni(I)L0(2)]+ (S = 1/2), [Cu(I)L0(2)]+ (S = 0), [Zn(II)L1L0]+ (S = 1/2) where the Mn(II) and Fe(II) ions are low-spin-configurated. The neutral species are described as [Mn(II)L1(2)]0, [Fe(II)L1(2)]0, [Co(I)L0L1]0, [Ni(I)L0L1]0, and [Zn(II)L1(2)]0; their electronic ground states have not been determined.  相似文献   

18.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

19.
Addition of 2,2'-bipyridine (bipy) to [Ni(NO)(bipy)][PF(6)] (1) results in formation of a rare five-coordinate nickel nitrosyl [Ni(NO)(bipy)(2)][PF(6)] (2). This complex exhibits a bent NO(-) ligand in the solid state. On standing in acetonitrile, 2 furnishes the NO coupled product, [Ni(κ(2)-O(2)N(2))(bipy)] (8) in moderate yield. Subsequent addition of 2 equiv of acetylacetone (H(acac)) to 8 results in formation of [Ni(acac)(2)(bipy)], N(2)O, and H(2)O. Preliminary mechanistic studies suggest that the N-N bond is formed via a bimetallic coupling reaction of two NO(-) ligands.  相似文献   

20.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号