首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Andreev reflection at a Pb/CrO(2) point contact has been used to determine the spin polarization of single-crystal CrO(2) films made by chemical vapor deposition. The spin polarization is found to be 0.96 +/- 0.01, which confirms that CrO(2) is a half-metallic ferromagnet, as theoretically predicted.  相似文献   

2.
We report an extensive theoretical analysis of point-contact Andreev reflection data available in the literature on ferromagnetic CrO2. We find that the spectra can be well understood within a model of fully spin-polarized bands in CrO2 together with spin-active scattering at the contact. This is in contrast to analysis of the data within extended Blonder-Tinkham-Klapwijk models, which lead to a spin polarization varying between 50% and 100% depending on the transparency of the interface. We propose to utilize both the temperature dependence of the spectra and the excess current at voltages above the gap to resolve the spin polarization in CrO2 in a new generation of experiments.  相似文献   

3.
The author reports here a thorough investigation of structural and magnetic properties of Co2FeAl0.5Si0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co2FeAl0.5Si0.5 electrodes, spin injection into GaAs semiconductor from Co2FeAl0.5Si0.5, and spin filtering phenomena for junctions with CoFe2O4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co2FeAl0.5Si0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co2FeAl0.5Si0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co2FeAl0.5Si0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co2FeAl0.5Si0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.  相似文献   

4.
We show that, in contrast with conventional normal metal-insulator-superconductor (NIS) junctions, the tunneling conductance of a NIS junction in graphene is an oscillatory function of the effective barrier strength of the insulating region, in the limit of a thin barrier. The amplitude of these oscillations is maximum for aligned Fermi surfaces of the normal and superconducting regions and vanishes for a large Fermi surface mismatch. The zero-bias tunneling conductance, in sharp contrast to its counterpart in conventional NIS junctions, becomes maximum for a finite barrier strength. We also suggest experiments to test these predictions.  相似文献   

5.
羊富彬 《理论物理通讯》2021,73(3):35702-155
We consider a single-level quantum dot(QD)and a topological superconducting wire hosting Majorana bound states at its ends.By the equation of motion method,we give the analytical Green’s function of the QD in the noninteracting and the infinite interacting case.We study the effects of QD energy level and the spin polarization on the density of states(DOS)and linear conductance of the system.In the noninteracting case,the DOS resonance shifts with the change of energy level and it shows bimodal structure at large spin polarization strength.In the infinite interacting case,the up-spin linear conductance first increases and then decreases with the increase of spin polarization strength,but the down-spin is stable.However,the DOS shows a splitting phenomenon in the large energy level with the increase of spin polarization strength.This provides an interesting way to explore the physical properties of such spin dependent effect in the hybrid Majorana QD systems.  相似文献   

6.
Epitaxial oxide trilayer junctions composed of magnetite (Fe3O4) and doped manganite (La0.7Sr0.3MnO3) exhibit inverse magnetoresistance as large as -25% in fields of 4 kOe. The inverse magnetoresistance confirms the theoretically predicted negative spin polarization of Fe3O4. Transport through the barrier can be understood in terms of hopping transport through localized states that preserve electron spin information. The junction magnetoresistance versus temperature curve exhibits a peak around 60 K that is explained in terms of the paramagnetic to ferrimagnetic transition of the CoCr2O4 barrier.  相似文献   

7.
We report the clearly observed tunneling magnetoresistance at 5 K in magnetic tunnel junctions with Co-doped ZnO as a bottom ferromagnetic electrode and Co as a top ferromagnetic electrode prepared by pulsed laser deposition. Spin-polarized electrons were injected from Co-doped ZnO to the crystallized Al2O3 and tunnelled through the amorphous Al2O3 barrier. Our studies demonstrate the spin polarization in Co-doped ZnO and its possible application in future ZnO-based spintronics devices.  相似文献   

8.
We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band.  相似文献   

9.
Electron spin-polarized tunneling is observed through an ultrathin layer of the molecular organic semiconductor tris(8-hydroxyquinolinato)aluminum (Alq3). Significant tunnel magnetoresistance (TMR) was measured in a Co/Al2O3/Alq3/NiFe magnetic tunnel junction at room temperature, which increased when cooled to low temperatures. Tunneling characteristics, such as the current-voltage behavior and temperature and bias dependence of the TMR, show the good quality of the organic tunnel barrier. Spin polarization (P) of the tunnel current through the Alq3 layer, directly measured using superconducting Al as the spin detector, shows that minimizing formation of an interfacial dipole layer between the metal electrode and organic barrier significantly improves spin transport.  相似文献   

10.
The ground state properties of a high spin magnetic impurity and its interaction with an electronic spin are probed via Andreev reflection. We see that through the charge and spin conductance one can effectively estimate the interaction strength, the ground state spin and magnetic moment of any high spin magnetic impurity. We show how a high spin magnetic impurity at the junction between a normal metal and superconductor can contribute to superconducting spintronics applications. Particularly, while spin conductance is absent below the gap for Ferromagnet-Insulator-Superconductor junctions we show that in the case of a Normal metal-High spin magnetic impurity-Normal Metal-Insulator-Superconductor (NMNIS) junction it is present. Further, it is seen that pure spin conduction can exist without any accompanying charge conduction in the NMNIS junction.  相似文献   

11.
We present ab initio calculations for the electronic ground-state and transport properties of epitaxial Fe/semiconductor/Fe (0 0 1) tunnel junctions. The ground state properties are determined by the ab initio Screened KKR Green's function method and the transport properties by a Green's function formulation of the Landauer–Büttiker formalism. We focus on tunnel junctions with a semiconducting ZnSe barrier and compare them to results for junctions with Si and GaAs barriers. We comment on the presence of metal-induced gap states (MIGS) in the semiconductor, the spin polarization of which strongly depends on the nature of the barrier. We investigate furthermore the influence of one atomic layer at the interface of a non-magnetic metal (Cu, Ag, Al) and of a magnetic 3d transition metal.  相似文献   

12.
磁性隧道结自旋极化电子的隧穿特性   总被引:1,自引:0,他引:1  
铁磁金属间通过中间层的自旋极化电子隧穿产生的磁性耦合,在自旋电子器件中有许多潜在的应用.考虑由一平面磁性势垒层隔开的两铁磁性金属电极构成的磁性隧道结,针对中间层形成的矩形势垒,在近自由电子模型的基础上,计算零偏压下的隧穿电导、自旋极化率和隧穿磁阻比率,分析势垒层特性、分子场强弱、分子场相对取向等对隧道结自旋极化电子隧穿特性的影响.计算结果对自旋电子器件的设计具有一定的指导意义.  相似文献   

13.
Conductance spectra measurements of highly transparent junctions made of superconducting La2-xSrxCuO4 electrodes and a nonsuperconducting La1.65Sr0.35CuO4 barrier are reported. At low temperatures below Tc, these junctions have two prominent Andreev-like conductance peaks with clear steps at energies Δ1 and Δ2 with Δ2>2Δ1. No such peaks appear above Tc. The doping dependence at 2 K shows that both Δ1 and Δ2 scale roughly as Tc. Δ1 is identified as the superconducting energy gap, while a few scenarios are proposed as for the origin of Δ2.  相似文献   

14.
This paper addresses recent theoretical and experimental advances in obtaining large spin polarization in semiconductors. In particular, we describe tunneling of electrons between nonmagnetic semiconductors (S) and ferromagnets (FM) through a Schottky barrier modified by very thin heavily doped interfacial layer. It is shown that in such reverse (forward) biased FM-S junctions electrons with a certain spin projection can be efficiently injected in (extracted from) S. This occurs due to spin filtering of electrons in a tunneling process. We find conditions for most efficient extraction and accumulation of spin and show that spin polarization of electrons near the interface can, at least in principle, be made close to 100% in nondegenerate S at room temperature and certain bias voltages. Extraction of spin can proceed in degenerate semiconductors at any (low) temperature. A new class of spin valve ultrafast devices with small dissipated power is described: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, and a square-law detector. PACS 72.25.Hg; 72.25.Mk; 72.25.Rb  相似文献   

15.
The tunnelling conductance spectra of ferromagnet/PrOs4Sb12 junctions are theoretically investigated by using the Blonder-Tinkham-Klapwijk theory. Three pairs of possible candidate for the pairing symmetry of superconducting energy gap of the recently discovered heavy-fermion unconventional superconductor PrOs4Sb12 are chosen for calculation. We have studied the spin-polarization effect on the conductance spectra, with respect to different strength of ferromagnetism of the ferromagnet and different strength of the interface barrier. Moreover, we have discussed the influence of nodal structures of the superconducting energy gap on the conductance spectra. Different features of the tunnelling conductance spectra were got, which may serve as useful theoretical comparisons for future experiments.  相似文献   

16.
We study theoretically transport properties of two-dimensional electron gases through antiparallel magnetic-electric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-function in opposite directions is equal and the other is that the strength is unequal. Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric barrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.  相似文献   

17.
We study mesoscopic spin Hall effect on the surface of a topological insulator with a step-function potential by using the McMillan method commonly used in the study of superconductor junctions. In the ballistic transport regime, we predict a giant spin polarization induced by a transverse electric current with parameter suitable to the topological insulator thin film Bi(2)Se(3). The spin polarization oscillates across the potential boundary with no confinement due to the Klein paradox, and should be observable in a spin resolved scanning tunneling microscope.  相似文献   

18.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

19.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ~ 10 to 20 μs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.  相似文献   

20.
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin–orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号