共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of [(HBpz(3))RhCl(2)(PPh(3))] (Hpz = pyrazole) with silver salts AgA (A = BF(4), NO(3), SbF(6)) affords the unexpected heterotrinuclear compounds [[(HBpz(3))Rh(PPh(3))(mu-Cl)(2)](2)Ag]A (A = BF(4) (1), NO(3) (2), SbF(6) (3)). The compounds have been fully characterized by IR, (1)H, (31)P[(1)H], and (13)C[(1)H] NMR spectroscopy and FAB(+) mass spectrometry. The solid structure of compound 1 was determined by single-crystal X-ray diffraction. The cation consists of two (HBpz(3))RhCl(2)(PPh(3)) units bonded to a silver atom through two double mu-Cl bridges in an unusual distorted square-planar arrangement. 相似文献
2.
Hill MS Hitchcock PB Pongtavornpinyo R 《Dalton transactions (Cambridge, England : 2003)》2008,(21):2854-2860
Oxidative insertion of the In(I) 'carbene analogues', [In{N(Dipp)C(Me))2CH] (Ar = Dipp = 2,6-iPr2C6H3; Ar = Mes = 2,4,6-Me3C6H2) into the Fe-I bond of [CpFe(CO)2I] occurred cleanly and under mild conditions to yield the In(III) compounds [CH((CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] and [CH( (CH3)2CN-2,4,6-Me3C6H3)2In(I)FeCp(CO)2], which have been fully characterised in solution and the solid state. Attempts to abstract the iodide anion from [CH( (CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] to form cationic species containing a coordinated indium diyl were unsuccessful and resulted in a complex mixture of products from which two ionic species were isolated. Neither cation was found to contain indium by X-ray crystallographic analysis. These observations were indicative of ill-defined decomposition pathways as have been noted by previous workers. A further attempt to form a cationic iron species containing a coordinated [In(N(Dipp)C(Me) )2CH] fragment resulted in oxidation of the iron centre from Fe(II) to Fe(III), with deposition of indium metal, and the isolation of a cationic Fe(III) beta-diketiminate complex. 相似文献
3.
Jizhu Jin Shingo Tsubaki Toshiya Uozumi Tsuneji Sano Kazuo Soga 《Macromolecular rapid communications》1998,19(11):597-600
Polymerization of propylene was conducted at 0 ∼ 150°C with the [ArN(CH2)3NAr]TiCl2 (Ar = 2,6-iPr2C6H3) complex using a mixture of trialkylaluminium (AIR3, R = methyl, ethyl and isobutyl) and Ph3CB(C6F5)4 as cocatalyst. When AlMe3 or AlEt3 was employed, atactic polypropylene (PP) was selectively produced, whereas the use of Al(iBu)3 gave a mixture of atactic and isotactic PP. The isotactic index (I.I.; weight fraction of isotactic polymer) depended strongly upon the polymerization temperature, and the highest I.I. was obtained at ca. 40°C. The 13C NMR analysis of the isotactic polymer suggests that the isotactic polymerization proceeds by an enantiomorphic-site mechanism. It was also demonstrated that the present catalyst shows a very high regiospecificity. 相似文献
4.
Cui C Köpke S Herbst-Irmer R Roesky HW Noltemeyer M Schmidt HG Wrackmeyer B 《Journal of the American Chemical Society》2001,123(37):9091-9098
Reduction of LAlI(2) (1) (L = HC[(CMe)(NAr)](2), Ar = 2,6-i-Pr(2)C(6)H(3)) with potassium in the presence of alkynes C(2)(SiMe(3))(2), C(2)Ph(2), and C(2)Ph(SiMe(3)) yielded the first neutral cyclopropene analogues of aluminum LAl[eta(2)-C(2)(SiMe(3))(2)] (3), LAl(eta(2)-C(2)Ph(2)) (4), and LAl[eta(2)-C(2)Ph(SiMe(3))] (5), respectively, whereas reduction of 1 in the presence of Ph(2)CO gave an aluminum pinacolate LAl[O(2)(CPh(2))(2)] (6), irrespective of the amount of Ph(2)CO employed. The unsaturated molecules CO(2), Ph(2)CO, and PhCN inserted into one of the Al-C bonds of 3 leading to ring enlargement to give novel aluminum five-membered heterocyclic systems LAl[OC(O)C(2)(SiMe(3))(2)] (7), LAl[OC(Ph)(2)C(2)(SiMe(3))(2)] (8), and LAl[NC(Ph)C(2)(SiMe(3))(2)] (9) in high yields. In contrast, 3 reacted with t-BuCN, 2,6-Trip(2)C(6)H(3)N(3) (Trip = 2,4,6-i-Pr(3)C(6)H(2)), and Ph(3)SiN(3) resulting in the displacement of the alkyne moiety to afford LAl[N(2)(Ct-Bu)(2)] (10) with an unprecedented aluminum-containing imidazole ring, and the first monomeric aluminum imides LAlNC(6)H(3)-2,6-Trip(2) (11) and LAlNSiPh(3) (12). All compounds have been characterized spectroscopically. The variable-temperature (1)H NMR studies of 3 and ESR measurements of 3 and 4 suggest that the Al-C-C three-membered-ring systems can be best described as metallacyclopropenes. The (27)Al NMR resonances of 2 and 3 are reported and compared. Molecular structures of compounds 3, 4, 6.OEt(2), 8.OEt(2), and 9 were determined by single-crystal X-ray structural analysis. 相似文献
5.
Jancik V Peng Y Roesky HW Li J Neculai D Neculai AM Herbst-Irmer R 《Journal of the American Chemical Society》2003,125(6):1452-1453
Surprisingly stable is the bis(hydrogen sulfide) of aluminum LAl(SH)(2) with two terminal arranged SH groups. The insertion of sulfur into the Al-H bonds is catalyzed by SP(NMe(2))(3). A possible mechanism is discussed. 相似文献
6.
Heitmann D Jones C Junk PC Lippert KA Stasch A 《Dalton transactions (Cambridge, England : 2003)》2007,(2):187-189
The first homoleptic lanthanide(II)-guanidinate complexes have been prepared and shown to have differing coordination geometries (including unprecedented examples of planar 4-coordination) that depend on the size of the lanthanide metal. 相似文献
7.
Zhu H Chai J Chandrasekhar V Roesky HW Magull J Vidovic D Schmidt HG Noltemeyer M Power PP Merrill WA 《Journal of the American Chemical Society》2004,126(31):9472-9473
The reaction of beta-diketiminated aluminum(I) monomer LAl with a large bulky azide N3Ar' (L = HC(CMeNAr)2, Ar' = 2,6-Ar2C6H3, Ar = 2,6-iPr2C6H3) in the temperature range from -78 degrees C to room temperature affords two different isomers 2 and 3, which have been characterized by spectroscopic and X-ray structural analyses, as well as elemental analysis. The variable-temperature 1H NMR kinetic studies of this reaction indicate the existence of the monomer LAlNAr' (1) at low temperature and the thermal stability of the compounds increases in the order of 1 < 2 < 3. 相似文献
8.
9.
Tschan MJ Süss-Fink G Chérioux F Therrien B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(1):292-299
The dinuclear cation [(C(6)Me(6))(2)Ru(2)(PPh(2))H(2)](+) (1) has been studied as the catalyst for the hydrogenation of carbon-carbon double and triple bonds. In particular, [1][BF(4)] turned out to be a highly selective hydrogenation catalyst for olefin functions in molecules also containing reducible carbonyl functions, such as acrolein, carvone, and methyljasmonate. The hypothesis of molecular catalysis by dinuclear ruthenium complexes is supported by catalyst-poisoning experiments, the absence of an induction period in the kinetics of cyclohexene hydrogenation, and the isolation and single-crystal X-ray structure analysis of the tetrafluoroborate salt of the cation [(C(6)Me(6))(2)Ru(2)(PPh(2))(CHCHPh)H](+) (2), which can be considered as an intermediate in the case of phenylacetylene hydrogenation. On the basis of these findings, a catalytic cycle is proposed which implies that substrate hydrogenation takes place at the intact diruthenium backbone, with the two ruthenium atoms acting cooperatively in the hydrogen-transfer process. 相似文献
10.
Reaction of the 17-electron radical (*)Cr(CO)(3)Cp* (Cp* = C(5)Me(5)) with 0.5 equiv of 2-aminophenyl disulfide [(o-H(2)NC(6)H(4))(2)S(2)] results in rapid oxidative addition to form the initial product (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp*. Addition of a second equivalent of (*)Cr(CO)(3)Cp* to this solution results in the formation of H-Cr(CO)(3)Cp* as well as (1)/(2)[[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2). Spectroscopic data show that (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp* loses CO to form [eta(2)-(o-H(2)N)C(6)H(4)S]Cr(CO)(2)Cp*. Attack on the N-H bond of the coordinated amine by (*)Cr(CO)(3)Cp* provides a reasonable mechanism consistent with the observation that both chelate formation and oxidative addition of the N-H bond are faster under argon than under CO atmosphere. The N-H bonds of uncoordinated aniline do not react with (*)Cr(CO)(3)Cp*. Reaction of the 2 mol of (*)Cr(CO)(3)Cp* with 1,2-benzene dithiol [1,2-C(6)H(4)(SH)(2)] yields the initial product (o-HS)C(6)H(4)S-Cr(CO)(3)Cp and 1 mol of H-Cr(CO)(3)Cp*. Addition of 1 equiv more of (*)Cr(CO)(3)Cp to this solution also results in the formation of 1 equiv of H-Cr(CO)(3)Cp*, as well as the dimeric product (1)/(2)[[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2). This reaction also occurs more rapidly under Ar than under CO, consistent with intramolecular coordination of the second thiol group prior to oxidative addition. The crystal structures of [[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2) and [[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2) are reported. 相似文献
11.
The reduction of Ar*GeCl (Ar* = C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3) with one equivalent of potassium leads to the formation of a germanium analogue of an alkyne Ar*GeGeAr* 1; reaction of 1 with 2,3-dimethyl-1,3-butadiene yields [Ar*Ge(CH2C(Me)C(Me)CH2)CH2C(Me)=]2 2, which was structurally characterized. 相似文献
12.
DFT (B3LYP) calculations have been carried out in order to quantitatively evaluate the energies and stereochemistry of the accessible structures of [(dhpe)Pt(SiHR(2))](+) (dhpe = H(2)P-CH(2)-CH(2)-PH(2); R = H, CH(3), SiH(3), Cl, OMe, SMe, NMe(2)) and of [(dhpe)Pt(SiR(3))](+) (R = CH(3), Cl). A number of different isomers have been located. The expected terminal silyl or hydrido-silylene complexes are often not the most stable complexes. An isomer in which an H or an R group bridges a Pt=SiHR or Pt=SiR(2) bond is found to compete with the terminal silyl or hydrido-silylene isomers. In some cases, isomers derived from cleavage of a C-H bond and formation of a silene or disilene ligand are obtained. The structures of the platinum silyls differ from that of the equivalent alkyl complex, calculated for [(dhpe)Pt(CH(3))](+). 相似文献
13.
Reaction of the amido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;H(2)) (2) and hexafluoroacetone gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))(2)) (3, 58%). Addition of TfOH to 3 yields the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))(2))](+)TfO(-) (4, 96%). Similar reactions of 2 with trifluoroacetaldehyde and then TfOH give the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))H)](+)TfO(-) (5, 78%) and sometimes small amounts of the corresponding pi-trifluoroacetaldehyde complex. Reaction of 5 and t-BuO(-)K(+) gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))H) (6, 82%). The IR and NMR properties of 3-6 are studied in detail. The (13)C NMR spectra show C=N signals (157-142 ppm) diagnostic of sigma-binding modes. No evidence is observed for pi isomers of 4 or 5. Analogous O=C(CF(3))X complexes give exclusively pi isomers, and rationales are discussed. Reactions of 3or 6 with MeOTf and heteroatom electrophiles are also described. 相似文献
14.
The salts [(eta-C(5)Me(5))Ru(NO)(bipy)][OTf](2) (1[OTf](2)) and [(eta-C(5)Me(5))Ru(NO)(dppz)][OTf](2) (2[OTf](2)) are obtained from the treatment of (eta-C(5)Me(5))Ru(NO)(OTf)(2) with 2,2'-bipyridine (bipy) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (OTf = OSO(2)CF(3)). X-ray data for 1[OTf](2): monoclinic space group P2(1)/c, a = 11.553 (4) ?, b = 16.517 (5) ?, c = 14.719 (4) ?, beta = 94.01 (2) degrees, V = 2802 (2) ?(3), Z = 4, R1 = 0.0698. X-ray data for 2[OTf](2): monoclinic space group P2(1)/c, a = 8.911 (2) ?, b = 30.516 (5) ?, c = 24.622 (4) ?, beta = 99.02 (1) degrees, V = 6613 (2) ?(3), Z = 8, R1 = 0.0789. Both 1[OTf](2) and 2[OTf](2) are soluble in water where they exhibit irreversible electrochemical oxidation and reduction. A fluorescence-monitored titration of a DNA solution containing 2[OTf](2) with ethidium bromide provides evidence that 2(2+) intercalates into DNA with a binding constant greater than 10(6) M(-)(1). DNA cleavage occurs when the DNA solutions containing 2[OTf](2) are photolyzed or treated with H(2)O(2) or K(2)S(2)O(8). 相似文献
15.
Weber L Meyer M Stammler HG Neumann B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2001,7(24):5401-5408
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles. 相似文献
16.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful. 相似文献
17.
Deprotonation of an Al-SH moiety has been achieved easily by using N-heterocyclic carbene as the base. Monomeric mono- and bis-imidazolium salts [C(t)H(+)][LAl(SH)(S)](-) ([C(t)H(+)] = N,N'-bis-tert-butylimidazolium), [C(m)H(+)][LAl(SH)(S)](-), and [C(m)H(+)](2)[LAl(S)(2)](2-) ([C(m)H(+)] = N,N'-bismesitylimidazolium), containing unusual anions [LAl(SH)(S)](-) and [LAl(S)(2)](2-), have been synthesized in nearly quantitative yields. Furthermore, [C(m)H(+)](2)[LAl(S)(2)](2-) has been successfully used for the preparation of LAl(SSiMe(2))(2)O containing the [O(Me(2)SiS)(2)](2-) ligand. 相似文献
18.
Reaction of YI(3)(THF)(3.5) with one equivalent of the potassium beta-diketiminate (BDI) complex [HC{C(CH(3))NAr}(2)K] (Ar = 2,6-Pr(i)(2)C(6)H(3)) affords the monomeric, mono-substituted yttrium BDI complex [HC{C(CH(3))NAr}(2)YI(2)(THF)] in good yield. Reaction of with DME affords [HC{C(CH(3))NAr}(2)YI(2)(DME)] in quantitative yield, which is monomeric also. Reaction of the primary terphenyl phosphane Ar*PH(2) (Ar* = 2,6-(2,4,6-Pr(i)(3)C(6)H(2))(2)C(6)H(3)) with potassium hydride, and recrystallisation from hexane, affords the potassium primary terphenyl phosphanide complex [{Ar*P(H)K(THF)}(2)] in high yield. Compound is dimeric in the solid state, constructed around a centrosymmetric K(2)P(2) four-membered ring, the coordination sphere of potassium is supplemented with an eta(6) K[dot dot dot]C(aryl) interaction. The reaction of with one molar equivalent of in THF affords the THF ring-opened compound [HC{C(CH(3))NAr}(2)Y{O(CH(2))(4)P(H)Ar*}(I)(THF)]. Compound is formed as a mixture of endo(OR) and exo(OR) isomers (: = approximately 2 : 1) which may be separated by fractional crystallisation from hexane-toluene to give pure . Attempted alkylation of with two equivalents of KCH(2)Si(CH(3))(3) affords the potassium yttriate complex [Y{micro-eta(5):eta(1)-ArNC(CH(3))[double bond, length as m-dash]CHC([double bond, length as m-dash]CH(2))NAr}(2)K(DME)(2)] in moderate yield; contains two dianionic dianilide ligands, which are derived from C-H activation of a backbone methyl group, each bonded eta(5) to yttrium in the solid state. The reaction of with one equivalent of KC(8) affords [{HC(C[CH(3)]NAr)(2)YI(micro-OCH(3))}(2)], derived from C-O bond activation of DME, as the only isolable product in very low yield. Compounds , , , , , and have been characterised by single crystal X-ray diffraction, NMR spectroscopy and CHN microanalyses. 相似文献
19.
Peter Dröse Cristian G. Hrib Liane Hilpert Prof. Dr. Frank T. Edelmann 《无机化学与普通化学杂志》2011,637(1):31-33
Use of the very bulky amidinate ligand [tBuC(NAr)2]–(= Piso, Ar = C6H3iPr2–2,6) allowed the synthesis and structural characterization of the chloro‐functional complex (Piso)2CeCl ( 1 ). Complex 1 represents a rare example of an unsolvated bis(amidinato) lanthanide chloride. An X‐ray diffraction study confirmed the presence of a pentacoordinate cerium(III) complex. 相似文献
20.
Avent AG Cloke FG Elvidge BR Hitchcock PB 《Dalton transactions (Cambridge, England : 2003)》2004,(7):1083-1096
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)). 相似文献