首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
影响单电子非线性汤姆孙散射因素的研究   总被引:3,自引:2,他引:1       下载免费PDF全文
郑君  盛政明  张杰  魏志义  余玮 《物理学报》2005,54(3):1018-1035
应用电子汤姆孙散射的经典理论,通过理论分析和计算机模拟,研究了超短超强激光脉冲作用下电子产生的辐射脉冲的性质.计算表明,在这种情况下,电子的辐射通常以阿秒脉冲列的形式出现.讨论了不同激光场参数(包括激光强度、脉宽、初相位和偏振态)、不同电子初始状态(初始速度和位置)对辐射脉冲的时间和空间特性的影响.通常在相对论光强条件下,激光强度越大,电子辐射越强,脉宽越窄,中心频率越大,并且方向性越好;电子在线偏振激光中产生的辐射效率,比在同样强度下圆偏振激光中产生的效率更高;无论入射光是线偏振光,还是圆偏振光,辐射场呈现较复杂的偏振态, 并且它与辐射方向有关.当电子具有一定的初始能量时,通常辐射场的振幅随电子初始能量的增大而增大.不管电子的初始能量以及运动方向如何,做相对论运动的电子产生的辐射趋向于出现在靠近电子运动方向的角度区域.  相似文献   

2.
曹莉华  余玮  徐涵  刘占军  郑春阳  李斌 《中国物理》2004,13(8):1302-1308
The mechanism of electron ponderomotive acceleration due to increasing group velocity of laser pulse in inhomogeneous underdense plasma layers is studied by two-dimensional relativistic parallel particle-in-cell code. The electrons within the laser pulse move with it and can be strongly accelerated ponderomotively when the duration of laser pulse is much shorter than the duration of optimum condition for acceleration in the wake. The extra energy gain can be attributed to the change of laser group velocity. More high energy electrons are generated in the plasma layer with descending density profile than that with ascending density profile. The process and character of electron acceleration in three kinds of underdense plasma layers are presented and compared.  相似文献   

3.
We demonstrate that a beam of x-ray radiation can be generated by simply focusing a single high-intensity laser pulse into a gas jet. A millimeter-scale laser-produced plasma creates, accelerates, and wiggles an ultrashort and relativistic electron bunch. As they propagate in the ion channel produced in the wake of the laser pulse, the accelerated electrons undergo betatron oscillations, generating a femtosecond pulse of synchrotron radiation, which has keV energy and lies within a narrow (50 mrad) cone angle.  相似文献   

4.
发展了一种描述相对论激光脉冲与稠密等离子体相互作用产生阿秒X射线源的半解析自洽理论.该理论模型不仅可以获得等离子体界面的振荡轨迹、振荡面电场和磁场等物理参数,而且能够精确计算出激光脉冲驱动下阿秒X射线源的频谱,结果与粒子模拟程序一致.理论计算结果表明阿秒X射线源的辐射特性与等离子体界面随时演化过程相关,在周期量级激光场驱动下等离子体界面振荡振幅呈现中心不对称,通过改变激光场的载波包络相位实现对等离子体界面振荡的控制,获得准单阿秒X射线源.  相似文献   

5.
Relativistic laser-plasma interaction results in new sources of short-pulsed x-ray radiation. Here we consider two options. The first one is betatron radiation of electrons accelerated in underdense plasmas and oscillating in transverse fields of the laser wake. This radiation is incoherent and broadband, the pulse duration is comparable with that of the driving laser. The second option is the high harmonic generation (HHG) from overdense plasma surfaces. This radiation is coherent. The relativistic high harmonics are phase locked and emerge in the form of (sub-)attosecond pulses. One- and three-dimensional regimes of relativistic HHG from overdense plasmas are considered.  相似文献   

6.
白易灵  张秋菊  田密  崔春红 《物理学报》2013,62(12):125206-125206
用一维粒子模拟程序对功率密度在1022 W/cm2以上的超强激光驱动薄膜靶产生的相对论电子层及其经过汤姆孙散射产生的阿秒X射线进行了研究. 结果表明, 在超相对论强度范围下增大驱动激光强度, 相应减小等离子体密度及厚度可使电子层获得更高纵向动量, 使汤姆孙散射光明显向更短波长移动. 优化相关参数得到了波长为 1.168 nm的阿秒脉冲. 经过对倍频探测光方案与驱动光以及薄膜靶参数进行综合考虑和优化, 得到的X射线相干辐射波长有效减小到0.4 nm以下, 产生的光子能量达到2 keV以上. 关键词: 超相对论强度激光 阿秒X射线 相对论电子层 汤姆孙后向散射  相似文献   

7.
For controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we propose using a solid nanofilm illuminated normally by an ultraintense femtosecond laser pulse having a sharp rising edge. With two-dimensional (2D) particle-in-cell (PIC) simulations, we show that, in spite of Coulomb forces, all of the electrons in the laser spot can be accelerated synchronously, and the REM keeps its surface charge density during evolution. We also developed a self-consistent 1D theory, which takes into account Coulomb forces, radiation of the electrons, and laser amplitude depletion. This theory allows us to predict the REM parameters and shows a good agreement with the 2D PIC simulations.  相似文献   

8.
 研究了逆流相对论电子与激光脉冲相互作用获得激光同步辐射的频率上移、微分散射截面等特性。发现逆流相对论电子与短脉冲激光相互作用,可以获得阿秒X射线辐射脉冲。短脉冲激光条件下得到的后向散射光的频率上移与长脉冲激光条件下得到的后向散射光的频率上移是完全一致的,同时发现随着入射电子初始能量的增加,散射光的准直性越来越好,后向散射光脉冲的脉宽越来越短。  相似文献   

9.
 研究了逆流相对论高能电子与强激光脉冲相互作用的同步辐射过程,当电子具有合适的初速度且传播方向与激光的传播方向相反时,电子在激光脉冲中心作圆周运动。由于电子的运动半径比传统同步辐射环中电子的运动半径小几个数量级,因此电子的辐射能量大大增加。研究发现此过程可以获得阿秒和泽秒X射线脉冲;同时发现随着入射电子初能量的增加和激光能量的增强,获得X射线脉冲脉宽越来越短,强度越来越大。这使得激光同步辐射可以成为一种强大的短波长短脉宽的辐射光源。  相似文献   

10.
张鹏  宋晏蓉  张志刚 《物理学报》2006,55(12):6208-6213
用经典辐射理论对线偏振周期量级激光脉冲的线性Thomson散射进行分析,从理论上得到它可产生亚阿秒脉冲的结论. 计算显示,在电子相对论因子为50、激光脉冲中心波长为1μm、归一化光场强度为0.01的情况下,用包含1.5个光周期的激光脉冲,可获得0.2as(半高全宽)的散射脉冲输出. 还对光场载波包络初相φce和电子进入光场的初相φin对散射脉冲的影响作了分析讨论,结果表明,在适当的φceφin条件下,能实现单个阿秒脉冲输出,并可对脉冲宽度和频率进行调谐. 关键词: 线性Thomson散射 周期量级激光脉冲 载波包络初相 阿秒脉冲  相似文献   

11.
The second harmonic of the laser light (2omega(0)) is observed on the rear side of thick solid targets irradiated by a laser beam at relativistic intensities. This emission is explained by the acceleration by the laser pulse in front of the target of short bunches of electrons separated by the period (or half the period) of the laser light. When reaching the rear side of the target, these electron bunches emit coherent transition radiation at 2omega(0). The observations indicate that, in our conditions, the minimum fraction of the laser energy transferred to these electron bunches is of the order of 1%.  相似文献   

12.
It is well established that, at sub-relativistic intensities, the absorption of laser light by underdense plasmas decreases with increasing pulse intensity as interaction enters a non-linear regime. On the other hand, as the relativistic interaction regime is reached, further absorption mechanisms can be activated which can account for a substantial energy transfer. Using the particle code WAKE, we performed numerical simulations of the relativistic interaction of intense laser pulses with underdense plasmas in conditions that can be experimentally tested. Our simulations show that, while the relativistic laser intensity generates a population of fast electrons, a considerable fraction of the pulse energy goes into a population of thermal electrons. These findings open new possibilities for a direct observation of relativistic interaction processes using high resolution soft X-ray techniques.  相似文献   

13.
Generation and propagation of fast electrons in laser targets consisting of thin nanofilaments are studied numerically and analytically. Such targets completely absorb laser radiation and exhibit a large coefficient of laser-energy conversion to kinetic energy of a flow of fast electrons. Analytical estimates show that the optimal thickness of the filament is on the order of the skin depth of the laser plasma, while an optimal distance between filaments is on the order of the Debye radius of hot electrons. A bunch of relativistic electrons can propagate as far as several hundred micrometers in such targets, while the fastest electrons can propagate several millimeters. Upon bending of filaments, the flow of electrons propagates along the filaments and can be focused by bringing the filaments together. Laser targets of the discussed composition are used as sources of dense bunches of relativistic electrons and subsequent generation of high-intensity X-ray radiation with their help.  相似文献   

14.
鲁瑜  张昊  张亮琪  魏玉清  李倩妮  沙荣  邵福球  余同普 《强激光与粒子束》2023,35(1):012006-1-012006-16
随着激光技术的不断发展,激光功率突破10 PW量级,激光与物质相互作用进入近量子电动力学(QED)范畴。从弱相对论激光到相对论激光再到强相对论激光,激光场与物质的耦合可以产生能量从keV到MeV甚至GeV的X/γ射线。这些辐射具有通量大、亮度高、能量高和脉宽短等特点,在核物理、高能量密度物理、天体物理等基础研究以及材料科学、成像、医学等领域具有广泛应用前景。系统梳理了近年来相对论强激光与气体、近临界密度等离子体及固体靶相互作用,通过诸如同步辐射、betatron和类betatron辐射、Thomson散射和非线性Compton散射过程等产生高能X/γ射线的最新研究进展,总结了各种方案产生的X/γ射线的品质因子和潜在应用,并为下一步基于强激光大科学装置的实验研究提供理论参考。  相似文献   

15.
High energy electron acceleration in a wake field generated in the intense ultrashort (30fs) laser pulse cluster gas jet interaction is experimentally demonstrated. Relativistic electrons with energy of 60 MeV were observed. These high energy electrons split into two beams due to the relativistic self-focusing of the laser.  相似文献   

16.
Linear Thomson scattering by a relativistic electron of a short pulse laser has been investigated by computer simulation. Under a laser field with a pulse of 33.3-fs full-width at half-maximum, and the initial energy of an electron of γ0=10, the motion of the electron is relativistic and generates an ultrashort radiation of 76-as with a photon wave length of 2.5-nm in the backward scattering. The radiation under a high relativistic energy electron has better characteristic than under a low relativistic energy electron in terms of the pulse width and the angular distribution.  相似文献   

17.
盛政明  张杰 《中国物理 C》2006,30(Z1):153-155
随着超短脉冲激光技术的发展, 人们可以在台面尺度获得光强超过1018W/cm2、脉宽小于100fs的超短脉冲激光.超短脉冲激光很容易把静止的电子加速到兆电子伏的能量. 而更重要的是超短激光脉冲可以通过其有质动力激发大振幅的等离子体波(称为激光尾波场), 后者可以在毫米空间尺度把电子加速到上百兆电子伏的能量.文章将介绍激光尾波场加速电子的物理机制和方案、这个领域的最新进展、以及目前存在的问题.  相似文献   

18.
H Vosoughian  Z Riazi  H Afarideh  G Sarri 《中国物理 B》2017,26(2):25201-025201
The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.  相似文献   

19.
Lasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (lambda(3)) can create relativistic intensity with maximal gradients, using minimal energy. With particle-in-cell simulations we found, that single 200 attosecond pulses could be produced efficiently in a lambda(3) laser pulse reflection, via deflection and compression from the relativistic plasma mirror created by the pulse itself. An analytical model of coherent radiation from a charged layer confirms the pulse compression and is in good agreement with simulations. The novel technique is efficient (approximately 10%) and can produce single attosecond pulses from the millijoule to the joule level.  相似文献   

20.
The problem of the motion of a classical relativistic electron in a focused high-intensity laser pulse is solved. A new three-dimensional model of the electromagnetic field, which is an exact solution of Maxwell’s equations, is proposed to describe a stationary laser beam. An extension of the model is proposed. This extension describes a laser pulse of finite duration and is an approximate solution of Maxwell’s equations. The equations for the average motion of an electron in the field of a laser pulse, described by our model, are derived assuming weak spatial and temporal nonuniformities of the field. It is shown that, to a first approximation in the parameters of the nonuniformities, the average (ponderomotive) force acting on a particle is described by the gradient of the ponderomotive potential, but it loses its potential character even in second order. It is found that the three-dimensional ponderomotive potential is asymmetric. The trajectories of relativistic electrons moving in a laser field are obtained and the cross sections for scattering of electrons by a stationary laser beam are calculated. It is shown that reflection of electrons from the laser pulse and the surfing effect are present in the model studied. It is found that for certain impact parameters of the incident electrons the asymmetic ponderomotive potential can manifest itself effectively as an attractive potential. It is also shown that even in the case of a symmetric potential the scattering cross section contains singularities, known as rainbow scattering. The results are applicable for fields characterized by large (compared to 1) values of the dimensionless parameter η2 = e 2E 2〉/m 2ω2 and arbitrary electron energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号