首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The lattice dynamics of FeSb(2) is investigated by first-principles density functional theory calculations and Raman spectroscopy. All Raman- and infrared-active phonon modes are properly assigned. The calculated and measured phonon energies are in good agreement. We have observed strong mixing of the A(g) symmetry modes, with the intensity exchange in the temperature range 210 and 260 K. The A(g) mode repulsion increases by doping FeSb(2) with Co, with no signatures of the electron-phonon interaction for these modes.  相似文献   

2.
Angle-resolved photoemission spectroscopy on optimally doped Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+delta) uncovers a coupling of the electronic bands to a 40 meV mode in an extended k-space region away from the nodal direction, leading to a new interpretation of the strong renormalization of the electronic structure seen in Bi2212. Phenomenological agreements with neutron and Raman experiments suggest that this mode is the B(1g) oxygen bond-buckling phonon. A theoretical calculation based on this assignment reproduces the electronic renormalization seen in the data.  相似文献   

3.
厉巧巧  韩文鹏  赵伟杰  鲁妍  张昕  谭平恒  冯志红  李佳 《物理学报》2013,62(13):137801-137801
拉曼光谱作为一种无破坏性、快速且敏锐的测试技术已经成 为表征石墨烯样品和研究其缺陷的最重要的实验手段之一. 本论文用离子注入在单层和双层石墨烯中产生缺陷, 并利用拉曼光谱研究了存在缺陷时单层和双层石墨烯的一阶和二阶拉曼模, 单层石墨烯的D模为双峰结构, 而双层石墨烯的D模具有四峰结构. 同时, 利用四条激光线系统地研究了本征和缺陷单层和双层石墨烯的拉曼峰频率的激发光能量依赖关系, 并基于石墨材料的双共振拉曼散射机理指认了离子注入后样品各拉曼峰的物理根源. 关键词: 石墨烯 缺陷 拉曼光谱 能量色散关系  相似文献   

4.
The electron dynamics in the normal state of Bi(2)Sr(2)CaCu(2)O(8+delta) is studied by inelastic light scattering over a wide range of doping. A strong anisotropy of the electron relaxation is found which cannot be explained by single-particle properties alone. The results strongly indicate the presence of an unconventional quantum-critical metal-insulator transition where "hot" (antinodal) quasiparticles become insulating while "cold" (nodal) quasiparticles remain metallic. A phenomenology is developed which allows a quantitative understanding of the Raman results and provides a scenario which links single- and many-particle properties.  相似文献   

5.
The phonon properties of CoSb(2) have been investigated by Raman scattering spectroscopy and lattice dynamics calculations. Sixteen out of eighteen Raman active modes predicted by factor-group analysis are experimentally observed and assigned. The calculated and measured phonon energies at the Γ point are in very good agreement. The temperature dependence of the A(g) symmetry modes is well represented by phonon-phonon interactions without contribution from any other phonon or electron related interactions.  相似文献   

6.
Xiao-Fang Tang 《中国物理 B》2022,31(3):37103-037103
High-quality large 1$T$ phase of Ti$X_2$ ($X ={\rm Te}$, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported $A_{1g}$ and $E_g$ modes, the rarely reported $E_u$ mode ($\sim$183 cm$^{-1}$ for TiTe$_2$, and $\sim$185 cm$^{-1}$ for TiS$_2$), and even the unexpected $K$ mode ($\sim$85 cm$^{-1}$) of TiTe$_2$. Most phonons harden with the decrease of temperature, except that the $K$ mode of TiTe$_2$ and the $E_u$ and "$A_{2u}$/Sh" modes of TiS$_2$ soften with the decrease of temperature. In addition, we also found phonon changes in TiSe$_2$ that may be related to charge density wave phase transition. Our results on Ti$X_2$ phonons will help to understand their charge density wave and superconductivity.  相似文献   

7.
The resonance Raman spectroscopy in conjunction with the density functional theory calculations were used to study the excited state structural dynamics of 2‐mercapto‐1‐methylimidazole (MMI). The experimental UV absorption bands were assigned according to the time‐dependent density functional calculations. The vibrational assignments were done for the A‐band resonance Raman spectra of MMI in water and acetonitrile on the basis of the Fourier transform infrared (FT‐IR) and FT‐Raman measurements in solid, in water and in acetonitrile and the corresponding B3LYP/6‐311+G(d, p) computations. The dynamic structures of MMI were obtained by analysis of the resonance Raman intensity pattern and normal mode analysis. The differences in the dynamic structures of MMI and thiourea were revealed and explained. The structural dynamic of MMI was found to be similar to that of 2‐thiopyrimidone in terms of major reaction coordinates and thus favored the intra‐molecular proton transfer reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The study reports the observation of radial vibrational modes in ultra‐thin walled anatase TiO2 nanotube powders grown by rapid breakdown anodization technique using resonant Raman spectroscopic study. The as‐grown tubes in the anatase phase are around 2–5 nm in wall thickness, 15–18 nm in diameter and few microns in length. The Eg(ν1,ν5,ν6) phonon modes with molecular vibrations in the radial direction are predominant in the resonance Raman spectroscopy using 325 nm He–Cd excitation. Multi‐phonons including overtones and combinational modes of Eg(ν1,ν5,ν6) are abundantly observed. Fröhlich interaction owing to electron–phonon coupling in the resonance Raman spectroscopy of ultra‐thin wall nanotubes is responsible for the observation of radial vibrational modes. Finite size with large surface energy in these nanotubes energetically favor only one mode, B1g(ν4) with unidirectional molecular vibrations in the parallel configuration out of the three Raman modes with molecular vibration normal to the radial modes. Enhanced specific heat with increasing temperatures in these nanotubes as compared to that reported for nanoparticles of similar diameter may possibly be related to the presence of the prominent radial mode along with other energetic phonon mode. The findings elucidate the understanding of total energy landscape for TiO2 nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We have studied vibrational dynamics of the T1u mode of the CN stretching mode of [Ru(CN)6 ]4- in D2O by infrared(IR) nonlinear spectroscopy such as an IR three-pulse photon echo experiment and polarization-sensitive IR pump-probe spectroscopy. The isotropic component of the pump-probe signal shows a bi-exponential decay with time constants of 0.8 ps and 20.8 ps. The fast and slow components correspond to the rapid equilibration between the T1u mode and the Raman active modes of the CN stretching mode and the vibrational population relaxation from the v=1 state of the T1u mode,respectively. Anisotropy of the pump-probe signal decays with a time constant of 3.1 ps,which is due to the time evolution of the superposition states of the triply degenerate T1u modes. Three pulse photon echo measurements showed that the time correlation function of the frequency fluctuation decays bi-exponentially with time constants of 80 fs and 1.4 ps. These time constants depend only on the solute and are independent of the solvent,whereas the amplitudes depend on both the solute and solvent.  相似文献   

10.
Pressure-dependent properties in layered transition-dichalcogenides are important for our understanding of their basic structures and applications. We investigate the electronic structure in MoSe_2 monolayer under external pressure up to 5.73 GPa by Raman spectroscopy and photoluminescence(PL) spectroscopy. The double resonance out-of-plane acoustic mode(2ZA) phonon is observed in Raman spectroscopy near 250 cm~(-1), which presents pronounced intensity and pressure dependence. Significant variation in 2ZA peak intensity under different pressures reflects the change in electronic band structure as pressure varies, which is consistent with the blue shift in PL spectroscopy. The high sensitivity in both Raman and PL spectroscopy under moderate pressure in such a two-dimensional material may have many advantages for optoelectronic applications.  相似文献   

11.
The lattice dynamics of a single crystal of CuGaS2, grown by iodine transport technique, have been studied by using far IR absorption spectroscopy. All the absorption maxima caused by the phonon excitation are compared with the lattice vibrational modes obtained by Raman spectroscopy and by IR reflection techniques. An absorption maximum located at 175 cm?1 cannot be explained with the help of phonon excitation; however this peak can be attributed to the defect frequency originating from the replacement of gallium atom by sulphur in the v17 mode of vibration. The frequency of this defect-induced vibrational mode is calculated by taking a modified molecular model approach, and is found to be 166.9 cm?1, which is in reasonably good agreement with the experimentally observed value of 175 cm?1.  相似文献   

12.
13.
RbNd(WO(4))(2) was investigated by high pressure Raman spectroscopy in the 0.1-12.3 GPa pressure interval. The assignment of modes was made based on lattice dynamics calculations and the results of these calculations helped us to also discuss the high pressure behavior of phonon spectra in this material. Our results show that a double oxygen bridge plays a fundamental role in the vibrational properties of this system. A density functional theory (DFT) calculation of hydrostatic pressure effects on RbNd(WO(4))(2) was performed in order to understand the effect of internal bond changes on the vibrational properties of RbNd(WO(4))(2). No pressure induced structural phase transition was observed in the Raman study at room temperature, and the DFT calculation (T = 0 K) is consistent with this result. The anomalous softening of the bridge stretching mode at 770 cm(-1) was attributed to the decrease of W-O1-W bond angle with increasing pressure.  相似文献   

14.
Raman spectroscopy in a laser heated diamond anvil cell and first principles molecular dynamics simulations have been used to study water in the temperature range 300 to 1500 K and at pressures to 56 GPa. We find a substantial decrease in the intensity of the O-H stretch mode in the liquid phase with pressure, and a change in slope of the melting line at 47 GPa and 1000 K. Consistent with these observations, theoretical calculations show that water beyond 50 GPa is "dynamically ionized" in that it consists of very short-lived (<10 fs) H2O, H3O+, and OH- species, and also that the mobility of the oxygen ions decreases abruptly with pressure, while hydrogen ions remain very mobile. We suggest that this regime corresponds to a superionic state.  相似文献   

15.
16.
An analytical approach using enhanced Raman spectroscopy to record molecular vibrations and associated molecular images within nanometric apertures is presented, which can essentially rival or surpass its counterparts, i.e. fluorescence microscopy, by providing unique structure‐specific information forward to chemical identification and structure elucidation. Utilizing a precise nanolithographic technology and the following chemically electroless silver deposition procedure, we deliberately construct the large scale zero‐mode waveguide array in gold film with embossed silver nanostructures on the bottom of nanowells capable of acquiring enhanced Raman spectra with substantial sensitivity and high chemical fidelity. Two chemicals, aminothiophenol (4‐ATP) and Rhodamine 6G, respectively, are employed as molecular indicators to successfully demonstrate the capability of this analytical strategy by exhibiting high‐quality Raman spectra and 2D chemical‐specific images. With a high magnitude objective (60×), we enable to acquire Raman spectra from a single nanometric aperture and quantitatively determine a peak enhancement factor of 3.63 × 105 for ATP, while 1.25 × 106 to Rhodamine 6G, comparable with a regular nanoparticle‐based surface‐enhanced Raman spectroscopy‐active substrate. Overall, the compelling characteristics of this detection scheme highlight its privileges for interrogating the individual molecular behavior in extremely confined geometry and illustrating the chemical insights of trace components without any labeling reagent and extra sample preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A new type of Raman spectroscopy is presented: After transient excitation of molecular modes coherently scattered Raman spectra are investigated in a depayed probing experiment. The spectral position of the Raman mode is observed after long delay times. The dephasing time is obtained from the time dependence of the scattered amplitudes. Frequency disturbing non-resonant susceptibilities are eliminated. We report on first experimental results of transient coherent Raman spectroscopy of liquid CH3CCl3.  相似文献   

18.

High temperature Raman and Brillouin light scattering experiments have been combined with molecular dynamics simulations to provide a comprehensive study of the superionic state of BaF 2 ( x v mol% LaF 3 ) over a particularly wide range of LaF 3 dopant concentrations from x =0 to 50. Room temperature Raman spectra for x =0, 5 and 10 show the usual T 2g symmetry mode at 241 v cm m 1 , but for samples with x =20, 30 and 50 the dominant Raman mode is at higher frequencies and of E g symmetry. The temperature dependence of the Raman line-widths show initial near linear increases followed by substantial increases above temperatures ( T c ) at 1200, 850, 800, 975, 950 and 920 v K for x =0, 5, 10, 20, 30 and 50. In the Brillouin scattering experiments, the acoustic modes respectively related to elastic constants C 11 and C 44 initially showed a quasi-linear decrease in frequency with increasing temperature. Above the same characteristic values of T c , where the Raman line-widths show marked increases, there are substantial decreases in the elastic constant C 11 for all samples with x =0 to 50. Only the doped samples showed significant decreases in C 44 at corresponding values of T c . Molecular dynamics (MD) simulations have been carried out on the same systems. From the calculated mean square displacements, the diffusion coefficients ( D ) of the mobile fluorine ions were calculated as a function of temperature for each of the samples. Substantial increases in the values of D occur above the respective values of T c determined in the light scattering experiments. The MD simulations also provide details of the mechanisms of diffusion of the mobile fluorine ions. The results emphasize the role of motional effects as an explanation of the mechanisms responsible and provide a self-consistent explanation of the dominant processes in the superionic phase of doped fluorites.  相似文献   

19.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtosecond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.  相似文献   

20.
The mineral wheatleyite has been synthesised and characterised by Raman spectroscopy complimented with infrared spectroscopy. Two Raman bands at 1434 and 1470 cm−1 are assigned to the ν(C O) stretching mode and implies two independent oxalate anions. Two intense Raman bands observed at 904 and 860 cm−1 are assigned to the ν(C C) stretching mode and support the concept of two non‐equivalent oxalate units in the wheatleyite structure. Two strong bands observed at 565 and 585 cm−1 are assigned to the symmetric CCO in plane bending modes. The Raman band at 387 cm−1 is attributed to the CuO stretching vibration and the bands at 127 and 173 cm−1 to OCuO bending vibrations. A comparison is made with Raman spectra of selected natural oxalate bearing minerals. Oxalates are markers or indicators of environmental events. Oxalates are readily determined by Raman spectroscopy. Thus, deterioration of works of art, biogeochemical cycles, plant metal complexation, the presence of pigments and minerals formed in caves can be analysed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号