首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the effect of dynamical Holstein phonons on the physics of the Hubbard model at small doping using the dynamical cluster approximation on a 2x2 cluster. Nonlocal antiferromagnetic correlations are found to significantly enhance the electron-phonon coupling, resulting in polaron formation for moderate coupling strengths. At finite doping, the electron-phonon coupling is found to strongly enhance the nonlocal spin correlations, indicating a synergistic interplay between the electron-phonon coupling and antiferromagnetic correlations. Although it enhances the pairing interaction, the electron-phonon coupling is found to decrease the superconducting transition temperature, due to the reduction in the quasiparticle fraction.  相似文献   

2.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

3.
We have calculated high temperature series to 12th order in inverse temperature for singlet superconducting correlation functions of the 2D t-J model with s, dx2-y2, and dxy symmetry pairs. Our calculations differ from previous work by removing disconnected pieces from the original four-point correlator and by treating the resulting pairing correlator as a matrix. We find the correlation length for dx2-y2 pairing grows significantly with decreasing temperature and develops a broad peak as a function of doping around delta=0.25 for T/J=0.25 at J/t=0.4. The correlation lengths for s and dxy symmetry remain small and do not display peaks. Antiferromagnetic spin correlations at low doping act to suppress the dx2-y2 and dxy superconducting correlation lengths.  相似文献   

4.
We calculate circulating-current (CC), charge-density-wave, and d-wave-like pairing (d-SC) correlation functions in the three-band Hubbard model for two-leg CuO ladders using the density-matrix renormalization group method and detect a dominant fluctuation in a wide range of parameter values and hole-doping rates. We find that, for model parameters leading to a realistic ground state in the undoped ladder, the CC fluctuations decay faster than the d-SC correlations at least up to a hole doping of 10%. It means that no phase with CC order or dominant CC fluctuations occur at low doping.  相似文献   

5.
Using the equation of motion technique for Green's functions we derive the exact solution of the boson fermion model in the atomic limit. Both (fermion and boson) subsystems are characterised by the effective three level excitation spectra. We compute the spectral weights of these states and analyse them in detail with respect to all possible parameters. Although in the atomic limit there is no true phase transition, we notice that upon decreasing temperature some pairing correlations start to appear. Their intensity is found to be proportional to the depleted amount of the fermion nonbonding state. We notice that pairing correlations behave in a fashion observed for the optimally doped and underdoped high Tc superconductors. We try to identify which parameter of the boson fermion model can possibly correspond to the actual doping level. This study clarifies the origin of pairing correlations within the boson fermion model and may elucidate how to apply it for interpretation of experimental data. Received 31 January 2003 / Received in final form 18 March 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: doman@kft.umcs.lublin.pl  相似文献   

6.
Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing δ and the bulk pairing gap Δ0, which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing δc at which the superconducting correlations cease: the critical ratio δc/Δ0 at which superconductivity disappears is found to be increased.  相似文献   

7.
N. Bulut 《物理学进展》2013,62(7):1587-1667
The numerical studies of d x 2 - y 2 -wave pairing in the two-dimensional (2D) and the 2-leg Hubbard models are reviewed. For this purpose, the results obtained from the determinantal Quantum Monte Carlo and the Density-Matrix Renormalization-Group calculations are presented. These are calculations which were motivated by the discovery of the high- T c cuprates. In this review, the emphasis is placed on the microscopic many-body processes which are responsible for the d x 2 - y 2 -wave pairing correlations observed in the 2D and the 2-leg Hubbard models. In order to gain insight into these processes, the results on the effective pairing interaction as well as the magnetic, density and the single-particle excitations will be reviewed. In addition, comparisons will be made with the other numerical approaches to the Hubbard model and the numerical results on the t - J model. The results reviewed here indicate that an effective pairing interaction which is repulsive at ( ~ , ~ ) momentum transfer, and enhanced single-particle spectral weight near the ( ~ ,0) and (0, ~ ) points of the Brillouin zone, create optimum conditions for d x 2 - y 2 -wave pairing. These are two effects which act to enhance the d x 2 - y 2 -wave pairing correlations in the Hubbard model. Finding additional ways is an active research problem.  相似文献   

8.
We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the on-site Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-J(eff) ladder in which J(eff) has been adjusted so that the two models have the same spin gap at half filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and points to the importance of the charge-transfer nature of the cuprate systems.  相似文献   

9.
Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on the two legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.  相似文献   

10.
We propose a weakly coupled two-band model with dx(2)(-y(2)) pairing symmetry to account for the anomalous temperature dependence of superfluid density rho(s) in electron-doped cuprate superconductors. This model gives a unified explanation to the presence of an upward curvature in rho(s) near T(c) and a weak temperature dependence of rho(s) in low temperatures. Our work resolves a discrepancy in the interpretation of different experimental measurements and suggests that the pairing in electron-doped cuprates has predominately dx(2)(-y(2)) symmetry in the whole doping range.  相似文献   

11.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determined only by amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field temperature T0 has a similar doping dependence as the pseudogap temperature T(*), whereas the pseudogap energy scale is given by the average amplitude above T(c).  相似文献   

12.
The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa(2)Cu(3)O (x) single crystals and Monte Carlo simulations of the anisotropic 3D- XY model. We directly show that T(c) of underdoped YBa(2)Cu(3)O (x) is strongly suppressed from its mean-field value (T(MF)(c)) by phase fluctuations of the superconducting order parameter. For overdoped YBa(2)Cu(3)O (x) fluctuation effects are greatly reduced and T(c) approximately T(MF)(c). We find that T(MF)(c) exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.  相似文献   

13.
We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, T(c) may be enhanced through an increase in the d-wave pairing interaction (V(d)) or the bare pairing susceptibility (χ(0d)). At optimal doping, where V(d) is revealed to be featureless, we find a power-law behavior of χ(0d)(ω=0), replacing the BCS log, and strongly enhanced T(c). We suggest experiments to verify our predictions.  相似文献   

14.
The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than T(c) for the underdoped region and it follows T(c) on the overdoped side. This behavior suggests finite pairing amplitude above T(c) on the underdoped side.  相似文献   

15.
We analyze fulleride superconductivity at experimental doping levels, treating the electron-electron and electron-phonon interactions on an equal footing, and demonstrate that the Jahn-Teller phonons create a local (intramolecular) pairing which is surprisingly resistant to the Coulomb repulsion, despite the weakness of retardation in these low-bandwidth systems. The requirement for coherence throughout the solid then yields a very strong doping dependence to T(c), one consistent with experiment and much stronger than expected from standard Eliashberg theory.  相似文献   

16.
In cuprates, in a view where pairing correlations set in at the pseudogap energy scale T* and acquire global coherence at a lower temperature Tc, the regionT c⪯ T ⪯ T* is a vast fluctuation regime.T c andT* vary differently with doping and the question remains about the doping trends of the relevant magnetic field scales: the field Hc2 bounding the superconducting response and the pseudogap closing field Hpg. In-plane thermal (Nernst) and our interlayer (tunneling) transport experiments in Bi2Sr2CaCu2O8+y report hugely different limiting magnetic fields. Here, based on pairing (and the uncertainty principle) combined with the definitions of the Zeeman energy and the magnetic length, we show that both fields convert to the same pseudogap scaleT* upon transformation as orbital and Zeeman critical fields, respectively. The region of superconducting coherence is confined to the ‘dome’ that coincides with the usual unique upper critical field Hc2 on the strongly overdoped side. We argue that the distinctly different orbital and the Zeeman limiting fields can co-exist owing to charge and spin degrees of freedom separated to different parts of the strongly anisotropic Fermi surface.  相似文献   

17.
Motivated by recent experimental measurements of the tunneling characteristics of high T(c) materials using scanning tunneling spectroscopy, we have calculated the I-V and differential conductance curves in the superconducting state at zero temperature. Comparing BCS-like d-wave pairing and the SU(2) slave-boson approach, we find that the slave-boson model can explain the asymmetric background observed in experiments. The slave-boson model also predicts that the height of the conductance peak relative to the background is proportional to the hole doping concentration x, at least for underdoped samples. We also observe the absence of the van Hove singularity, and comment on possible implications.  相似文献   

18.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.  相似文献   

19.
According to recent experimental findings the leading pairing resides in the nodal (FS arcs) momentum region of hole doped cuprates. The pseudogap is an antinodal feature. A corresponding multiband model of the electronic background evolving with doping serves the usually presented phase diagram. The pairing is due by the pair-transfer between overlapping nodal defect (polaron) band and the itinerant band. A bare gap vanishing with extended doping between the antinodal defect subband and the itinerant band top leads to the formation of the pseudogap as a perturbative band-structure effect. The calculated behaviour of two superconducting gaps and of the pseudogap on the whole doping scale is in qualitative agreement with the observations. Arguments to include cuprates into the class of multiband-multigap superconductors are given by these results.  相似文献   

20.
We present measurements of the magnetic penetration depth, lambda(-2)(T), in Pr(2-x)Ce(x)CuO(4-y) and La(2-x)Ce(x)CuO(4-y) films at three Ce doping levels, x, near optimal. Optimal and overdoped films are qualitatively and quantitatively different from underdoped films. For example, lambda(-2)(0) decreases rapidly with underdoping but is roughly constant above optimal doping. Also, lambda(-2)(T) at low T is exponential at optimal and overdoping but is quadratic at underdoping. In light of other studies that suggest both d- and s-wave pairing symmetry in nominal optimally doped samples, our results are evidence for a transition from d- to s-wave pairing near optimal doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号