首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

2.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

3.
Measurements of the lateral components j (j=2 and 3) of the vorticity fluctuation vector have been made, using a vorticity probe consisting of two X-wires, in the intermediate wake of a circular cylinder. The effect of the spatial resolution of the probe on the measurement of j has been studied. As the spatial resolution impairs, the variance and flatness factor of j decrease whereas the skewness of j increases. Reasonably accurate values of j 2 can be obtained by applying spectral corrections for the spatial resolution effect.Near the beginning of the intermediate wake, the variance of 2 is larger than that of 3 due to the significant contribution from ribs which connect consecutive spanwise roll vortices. This difference decreases with downstream distance. Also, the presence of the rolls is reflected by a local extremum in the skewness of 3 on each side of the wake centerline. The magnitude of the extremum decreases with downstream distance.The support of the Australian Research Council is gratefully acknowledged.  相似文献   

4.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

5.
Summary Results are given of a comparison between dynamic oscillatory and steady shear flow measurements with some polymer melts. Comparison of the steady shear flow viscosity,, with the absolute value of the dynamic viscosity, ¦¦, at equal values of the shear rate,q, and the circular frequency,, has shown the relation thatCox andHerz had found empirically to be substantially correct.Further, the coefficients of the normal stress differences obtained by streaming birefringence techniques have been compared with 2G () · – 2 in the same range of shear rates as covered by the viscosity measurements (G is the real part of the dynamic shear modulus). Two polystyrenes with narrow molecular weight distribution showed the same shift factor along the orq axis for the normal stress coefficients with respect to 2G () · – 2 and the steady shear flow viscosities with respect to the real part of the dynamic viscosity,. For two polyethylenes the results are not so conclusive owing to the smallness of the shift factor found. An empirical equation is proposed predicting the main normal stress difference from dynamic measurements only.
Zusammenfassung Die Ergebnisse von Messungen unter erzwungenen Schwingungen und stationärer Scherströmung an einigen Polymerschmelzen werden miteinander verglichen. Der Vergleich der stationären Viskosität mit der absoluten dynamischen Viskosität ¦¦ bei gleichen Werten des Strömungsgradientenq und der Kreisfrequenz zeigt die Gültigkeit der empirischen Beziehung vonCox undHerz.Weiter wurden die Koeffizienten der Normalspannungsdifferenzen, welche durch Messung der Strömungsdoppelbrechung erhalten wurden, mit 2G() · –2 verglichen, und zwar wiederum bei gleichen Werten vonq und, wobeiG die Speicherkomponente des dynamischen Schubmoduls ist. Zwei Polystyrole mit enger Molekulargewichtsverteilung zeigen die gleiche Verschiebung entlang der-oderq-Achse für die Normalspannungskoeffizienten in bezug auf2G()· –2 und für die stationären Scherviskositäten in bezug auf den Realteil der dynamischen Viskosität. Für zwei Polyäthylene sind die Ergebnisse weniger signifikant, da die entsprechenden Verschiebungen zu klein waren. Eine empirische Beziehung zwischen den Hauptnormalspannungsdifferenzen und den dynamischen Meßwerten wird vorgeschlagen.


Paper presented at the British Society of Rheology Conference, held at Shrivenham, from 9th–12th September, 1968.  相似文献   

6.
A theory analogue to tha of Rouse is given, to describe the rheological behavior of dilute solutions consisting of clusters of crosslinked polymers. The frequency-dependent behavior of the dynamic moduli of these fluids differs substantially from that of the well-known Rouse-like fluid (GG1/2). In our case the storage modulus becomes proportional to 3/2, while the loss modulus is proportional to . The loss modulus dominates the dynamic behavior for frequencies smaller than the largest normal frequency of the clusters.  相似文献   

7.
In this paper we present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever =×(0,l) with rectangular cross-section of sides and 2, as goes to zero. Under suitable assumptions on the given loads, we show that the three-dimensional problem converges in a variational sense to the classical one-dimensional model for extension, flexure and torsion of thin-walled beams. Mathematics Subject Classifications (2000) 474K20, 74B10, 49J45.  相似文献   

8.
Summary The viscoelastic properties of 65/35 styrenen-butyl methacrylate random copolymers were determined using the Eccentric Rotating Disks device of the Rheometrics Mechanical Spectrometer. Similar to the behavior observed in homopolymers, an increase in the molecular weight of the copolymer resulted in extension of the rubbery plateau and in a reduction in the terminal region. The dynamic complex viscosity showed onset of non-Newtonian flow at higher frequencies, with the non-Newtonian region increasing with increasing molecular weight.The elastic modulus,G, was dependent upon the frequency,, asG 1.5 in the terminal region, rather than asG 2 observed for polystyrene. The viscous modulus,G, was proportional to the frequency,, asG , similar to what is observed for polystyrene. The dynamic viscosity | *| at high frequencies showed a region independent of molecular weight where a power law of | *| 0.9 is applicable, consistent with entanglement models. Thy dynamic viscosity at low frequencies in the Newtonian region is related to molecular weight as |*| . Using WLF equations, the coefficient of expansion, f , was obtained that, together with glass transition, showed a negative deviation from the Fox-Flory relationship.
Zusammenfassung Die viskoelastischen Eigenschaften von statistischen 65/35-Styrol/n-Butyl-Methacrylat-Kopolymeren wurden mit Hilfe einer Maxwell-Rheometer-Anordnung in Verbindung mit dem Mechanischen Spektrometer der Fa. Rheometrics bestimmt. Ähnlich dem bei Homopolymeren beobachteten Verhalten ergab sich auch hier mit wachsendem Molekulargewicht eine Verbreiterung des Kautschuk-Plateaus und eine Verkleinerung des Endbereichs. Die komplexe Viskosität zeigte erst bei höheren Frequenzen das Einsetzen nicht-newtonschen Fließens an, wobei der nichtnewtonsche Bereich mit steigendem Molekulargewicht größer wurde.Der SpeichermodulG ergab sich im Endbereich als proportional zu 1,5, im Unterschied zu der bei Polystyrol beobachteten Proportionalität mit 2. Dagegen war der VerlustmodulG der Frequenz direkt proportional, ähnlich wie es auch bei Polystyrol beobachtet worden war. Die dynamische Viskosität | *| zeigte unabhängig vom Molekulargewicht bei hohen Frequenzen einen Bereich, in dem eine Potenz-Beziehung | *| ~ 0,9 herrschte, was auf die Wirkung von Verzweigungen hindeutet. Dagegen galt bei den niedrigen Frequenzen des newtonschen Bereichs|*| ~ . Mit Hilfe der WLF-Gleichung wurde der Ausdehnungskoeffizient f bestimmt, der ebenso wie der Glasübergang eine negative Abweichung von der Fox-Flory-Beziehung zeigte.


With 10 figures and 1 table  相似文献   

9.
In dynamic rheological experiments melt behavior is usually expressed in terms of complex viscosity * () or complex modulusG * (). In contrast, we attempted to use the complex fluidity * () = 1/µ * () to represent this behavior. The main interest is to simplify the complex-plane diagram and to simplify the determination of fundamental parameters such as the Newtonian viscosity or the parameter of relaxation-time distribution when a Cole-Cole type distribution can be applied. * () complex shear viscosity - () real part of the complex viscosity - () imaginary part of the complex viscosity - G * () complex shear modulus - G() storage modulus in shear - G() loss modulus in shear - J * () complex shear compliance - J() storage compliance in shear - J() loss compliance in shear - shear strain - rate of strain - angular frequency (rad/s) - shear stress - loss angle - * () complex shear fluidity - () real part of the complex fluidity - () imaginary part of the complex fluidity - 0 zero-viscosity - 0 average relaxation time - h parameter of relaxation-time distribution  相似文献   

10.
Normal forms for random diffeomorphisms   总被引:1,自引:0,他引:1  
Given a dynamical system (,, ,) and a random diffeomorphism (): d d with fixed point at x=0. The normal form problem is to construct a smooth near-identity nonlinear random coordinate transformation h() to make the random diffeomorphism ()=h()–1() h() as simple as possible, preferably linear. The linearization D(, 0)=:A() generates a matrix cocycle for which the multiplicative ergodic theorem holds, providing us with stochastic analogues of eigenvalues (Lyapunov exponents) and eigenspaces. Now the development runs pretty much parallel to the deterministic one, the difference being that the appearance of turns all problems into infinite-dimensional ones. In particular, the range of the homological operator is in general not closed, making the conceptof-normal form necessary. The stochastic versions of resonance and averaging are developed. The case of simple Lyapunov spectrum is treated in detail.  相似文献   

11.
Let D R N be a cone with vertex at the origin i.e., D = (0, )x where S N–1 and x D if and only if x = (r, ) with r=¦x¦, . We consider the initial boundary value problem: u t = u+u p in D×(0, T), u=0 on Dx(0, T) with u(x, 0)=u 0(x) 0. Let 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on and let + denote the positive root of (+N–2) = 1. Let p * = 1 + 2/(N + +). If 1 < p < p *, no positive global solution exists. If p>p *, positive global solutions do exist. Extensions are given to the same problem for u t=+¦x¦ u p .This research was supported in part by the Air Force Office of Scientific Research under Grant # AFOSR 88-0031 and in part by NSF Grant DMS-8 822 788. The United States Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright notation therein.  相似文献   

12.
Some properties of solutions of initial value problems and mixed initial-boundary value problems of a class of wave equations are discussed. Wave modes are defined and it is shown that for the given class of wave equations there is a one to one correspondence with the roots i (k) or k j () of the dispersion relation W(, k)=0. It is shown that solutions of initial value problems cannot consist of single wave modes if the initial values belong to W 2 1 (–, ); generally such solutions must contain all possible modes. Similar results hold for solutions of mixed initial-boundary value problems. It is found that such solutions are stable, even if some of the singularities of the functions k j () lie in the upper half of the plane. The implications of this result for the Kramers-Kronig relations are discussed.  相似文献   

13.
Hausdorff Dimension of Invariant Sets for Random Dynamical Systems   总被引:2,自引:0,他引:2  
Suppose X() is a compact random set, invariant with respect to a continuously differentiable random dynamical system (RDS) on a separable Hilbert space. It is shown that the Hausdorff dimension dim H (X()) is an invariant random variable, and it is bounded by d, provided the RDS contracts d-dimensional volumes exponentially fast. Both exponential decrease of d-volumes as well as the approximation of the RDS by its linearization are assumed to hold uniformly in . The results are applied to reaction diffusion equations with additive noise and to two-dimensional Navier–Stokes equations with bounded real noise.  相似文献   

14.
Gelatin gel properties have been studied through the evolution of the storage [G()] and the loss [G()] moduli during gelation or melting near the gel point at several concentrations. The linear viscoelastic properties at the percolation threshold follow a power-law G()G() and correspond to the behavior described by a rheological constitutive equation known as the Gel Equation. The critical point is characterized by the relation: tan = G/G = cst = tan ( · /2) and it may be precisely located using the variations of tan versus the gelation or melting parameter (time or temperature) at several frequencies. The effect of concentration and of time-temperature gel history on its variations has been studied. On gelation, critical temperatures at each concentration were extrapolated to infinite gel times. On melting, critical temperatures were determined by heating step by step after a controlled period of aging. Phase diagrams [T = f(C)] were obtained for gelation and melting and the corresponding enthalpies were calculated using the Ferry-Eldridge relation. A detailed study of the variations of A with concentration and with gel history was carried out. The values of which were generally in the 0.60–0.72 range but could be as low as 0.20–0.30 in some experimental conditions, were compared with published and theoretical values.  相似文献   

15.
The equations of micropolar elastodynamics are considered for an unbounded continuum subjected to a body force and a body couple. These act harmonically with the same real frequency , but with individual arbitrary spatial distributions. Over a harmonic state, the displacement and microrotation are related to two radiation conditioned harmonic vectors, each acquiring three eigenvalue contributions, assuming a noncritical -frequency. Altogether, four distinct eigenvalues are admissible. If 2<22 0, 0 being a frequency parameter of the continuum, two of these are real while two are purely imaginary. But if 2<22 0, then all admissible eigenvalues are real. Each eigenvalue contribution resolves into a series of Hankel and Bessel functions coupled to Hankel type transforms of: (i) spherical integrals which, in turn, can be expanded via spherical harmonics for the 3-dimensional problem, (ii) circular integrals for the 2-dimensional problem. Axisymmetric and spherically symmetric results are deduced in 3-dimensions. Asymptotic solutions are also established; they disclose long-range formation of radially attenuated spherical (or circular) waves propagating with, generally, anisotropic amplitudes but, invariably, isotropic eikonals.If, in the absence of a body couple, a body force acts radially in 3-dimensions with a spherically symmetric strength, then the elastic displacement behaves likewise while the microrotation vanishes identically. Another application is made to a 2-dimensional problem for a 1 × 3 source system of body force plus body couple without longitudinal variation but with magnitudes symmetric about a longitudinal axis.As approaches a certain critical frequency , dependent solely on the continuum, at least two eigenvalues approach the same value. The phenomenon is explored for a continuum consistent with 2<22 0 and under the hypothesis 2<22 0. All admissible eigenvalues are then real throughout an -neighbourhood of . Here, two associated eigenvalue contributions behave singularly. Nevertheless, their essential singularities cancel out within the relevant combination. Examination of a far-field suggests that critical frequency attainment sets off a slow instability in the 2-dimensional configuration. In the 3-dimensional configuration, however, it preserves stability and eliminates radial attenuation; an exact solution is formulated for this case.  相似文献   

16.
Stochastic subsurface transport theories either disregard local dispersion or take it to be constant. We offer an alternative Eulerian-Lagrangian formalism to account for both local dispersion and first-order mass removal (due to radioactive decay or biodegradation). It rests on a decomposition of the velocityv into a field-scale componentv , which is defined on the scale of measurement support, and a zero mean sub-field-scale componentv s , which fluctuates randomly on scales smaller than. Without loss of generality, we work formally with unconditional statistics ofv s and conditional statistics ofv . We then require that, within this (or other selected) working framework,v s andv be mutually uncorrelated. This holds whenever the correlation scale ofv is large in comparison to that ofv s . The formalism leads to an integro-differential equation for the conditional mean total concentration c which includes two dispersion terms, one field-scale and one sub-field-scale. It also leads to explicit expressions for conditional second moments of concentration cc. We solve the former, and evaluate the latter, for mildly fluctuatingv by means of an analytical-numerical method developed earlier by Zhang and Neuman. We present results in two-dimensional flow fields of unconditional (prior) mean uniformv . These show that the relative effect of local dispersion on first and second moments of concentration dies out locally as the corresponding dispersion tensor tends to zero. The effect also diminishes with time and source size. Our results thus do not support claims in the literature that local dispersion must always be accounted for, no matter how small it is. First-order decay reduces dispersion. This effect increases with time. However, these concentration moments c and cc of total concentrationc, which are associated with the scale below, cannot be used to estimate the field-scale concentrationc directly. To do so, a spatial average over the field measurement scale is needed. Nevertheless, our numerical results show that differences between the ensemble moments ofc and those ofc are negligible, especially for nonpoint sources, because the ensemble moments ofc are already smooth enough.  相似文献   

17.
We prove that the set D of vector fields on the configuration space B of a field whose 1-parameter groups locally associated are groups of fibre-preserving transformations of B that leave invariant that field in the sense of variational theory, is a Lie algebra with respect to ordinary addition, multiplication by real numbers and Lie brackets. We see that this Lie algebra structure can be carried over to the corresponding set of Noether invariants, which then becomes a Lie algebra in a natural way.Further, we define the n-form of Poincaré-Cartan of a field, and we use it to generalize the Lie algebras D and in a reasonable way. The algebras D and are subalgebras of the new Lie algebras D and introduced. A main result in this connection is the following: the differential d of the n-form of Poincaré-Cartan is –(d+f), where (, d+f) are the field equations on the vertical bundle B.The symplectic manifold of solutions associated with a field is introduced in a formal way and the former Lie algebras D, , D, are interpreted on this manifold. In imitation of the case of analytical dynamics, the main results in this direction are: a) Every vector field of the Lie algebra D defines, in a canonical way, a vector field on the manifold of solutions such that its polar 1-form with respect to the symplectic metric 2 is the differential of its corresponding Noether invariant, and b) the Lie bracket [, ] of two Noether invariants , is the Noether invariant given by 2(D, D), where D, D are the vector fields on the manifold of solutions defined, in the sense a), by two infinitesimal generators of , , respectively. This will allow us to regard the Lie algebra as the analogous object in field theory to the Poisson algebra of analytic dynamics.We apply the general formalism to the relativistic theory of non-linear scalar fields, and we compare our results with the formalism developed by I. Segal for this case.  相似文献   

18.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

19.
Stress-optical measurements are used to quantitatively determine the third-normal stress difference (N 3 = N 1 + N 2) in three entangled polymer melts during small amplitude (<15%) oscillatory shear over a wide dynamic range. The results are presented in terms of the three material functions that describe N 3 in oscillatory shear: the real and imaginary parts of its complex amplitude 3 * = 3 - i 3 , and its displacement 3 d . The results confirm that these functions are related to the dynamic modulus by 2 3 * ()=(1-)[G *())– G *(2)] and 2 3 d ()=(1- )G() as predicted by many constitutive equations, where = –N 2/N 1. The value of (1-) is found to be 0.69±0.07 for poly(ethylene-propylene) and 0.76±0.07 for polyisoprene. This corresponds to –N 2/N 1 = 0.31 and 0.24±0.07, close to the prediction of the reptation model when the independent alignment approximation is used, i.e., –N 2/N 1 = 2/7 – 0.28.  相似文献   

20.
The structure of fully-developed turbulence in a smooth pipe has been studied via wavenumber spectra for various friction velocities, namely, u ,=0.61 and 1.2 m/s (the corresponding Reynolds numbers based on centerline velocity and pipe radius being respectively 134,000 and 268,000) at various distances from the wall, namely y + = 70, 200,400 and 1,000. For each distance from the wall, correlations of the longitudinal component of turbulence were obtained simultaneously in seven narrow frequency bands by using an automated data acquisition system which jointly varied the longitudinal (x) and transverse (z) separations of two hot-wire probes. The centre frequencies of the bandpass filters used correspond to a range of nondimensional frequencies + from 0.005 to 0.21. By taking Fourier transforms of these correlations, three-dimensional power spectral density functions and hence wavenumber spectra have been obtained at each y + with nondimensional frequency + and nondimensional longitudinal and transverse wavenumbers k x + and k z + as the independent variables. The data presented in this form show the distribution of turbulence intensity among waves of different size and inclination. The data reported here cover a wave size range of over 100, spanning a range of wave angles from 2° to 84°. The effects of friction velocity and Reynolds number on the distribution of waves, their lifetimes and convection velocities are also discussed.List of symbols A wave strength function - C x streamwise phase velocity - C z circumferential phase velocity - f wave intensity function - k resultant wave number = [k x 2 + k z 2 ]1/2 - k x , k z longitudinal (x) and transverse (z) wavenumber respectively - P(k x + , k z + , +) power spectral density function in u - R radius of pipe - Re Reynolds number (based on centerline velocity and pipe radius) - R uu (x +, z+, ) normalized correlation function in u - R unu (x +, z++¦) normalized filtered correlation function in u, as defined in equation (1) - t time - U mean velocity in the x-direction - u, v, w turbulent velocities in the cartesian x, y and z directions respectively - û, v, turbulent velocities in the wave coordinate x, and directions respectively - u friction velocity - x, y, z cartesian coordinates in the longitudinal (along the pipe axis), normal (to the pipe wall) and transverse (along the circumference of the pipe) directions respectively, as defined in Fig. 1 - wave angle - difference between two quantities - v kinematic viscosity - time delay - circular frequency (radians/s) - + quantity nondimensionalized using u and v - overbar time average A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 September, 1990  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号