首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achieving precise control of active species on solid surfaces is one of the most important goals in the development of highly functionalized heterogeneous catalysts. The treatment of hydroxyapatites with PdCl(2)(PhCN)(2) gives two new types of hydroxyapatite-bound Pd complexes. Using the stoichiometric hydroxyapatite, Ca(10)(PO(4))(6)(OH)(2), we found that monomeric PdCl(2) species can be grafted on its surface, which are easily transformed into Pd(0) particles with narrow size distribution in the presence of alcohols. Such metallic Pd species can effectively promote alcohol oxidation using molecular oxygen and are shown to give a remarkably high TON of up to 236 000. Another monomeric Pd(II) phosphate complex can be generated at a Ca-deficient site of the nonstoichiometric hydroxyapatite, Ca(9)(HPO(4))(PO(4))(5)(OH), affording a catalyst with Pd(II) structure and high activity for the Heck and Suzuki reactions. To the best of our knowledge, the PdHAP are one of the most active heterogeneous catalysts for both alcohol oxidation under an atmospheric O(2)() pressure and the Heck reaction reported to date. These Pd catalysts are recyclable in the above organic reactions. Our approach to catalyst preparation based on the control of Ca/P ratios of hydroxyapatites represents a particularly attractive method for the nanoscale design of catalysts.  相似文献   

2.
A ruthenium-grafted hydrotalcite (Ru/HT) and hydrotalcite-supported palladium nanoparticles (Pd(nano)/HT) are easily prepared by treating basic layered double hydroxide, hydrotalcite (HT, Mg(6)Al(2)(OH)(16)CO(3)) with aqueous RuCl(3)n H(2)O and K(2)[PdCl(4)] solutions, respectively, using surface impregnation methods. Analysis by means of X-ray diffraction, and energy-dispersive X-ray, electron paramagnetic resonance, and X-ray absorption fine structure spectroscopies proves that a monomeric Ru(IV) species is grafted onto the surface of the HT. Meanwhile, after reduction of a surface-isolated Pd(II) species, highly dispersed Pd nanoclusters with a mean diameter of about 70 A is observed on the Pd(nano)/HT surface by transmission electron microscopy analysis. These hydrotalcite-supported metal catalysts can effectively promote alpha-alkylation reactions of various nitriles with primary alcohols or carbonyl compounds through tandem reactions consisting of metal-catalyzed oxidation and reduction, and an aldol reaction promoted by the base sites of the HT. In these catalytic alpha-alkylations, homogeneous bases are unnecessary and the only by-product is water. Additionally, these catalyst systems are applicable to one-pot syntheses of glutaronitrile derivatives.  相似文献   

3.
田涛  刘英  张勋高 《催化学报》2015,(8):1358-1364
采用均匀沉积-沉淀法制备了氧化铜修饰羟基磷灰石负载金催化剂(Au/CuO-HAP),并用原子吸收光谱、N2吸附脱附、X射线粉末衍射、透射电镜和X射线光电子能谱等方法对催化剂结构和形貌进行了表征.考察了催化剂对醇类液相需氧氧化的催化性能.与单金属Au/HAP或CuO-HAP相比较,双金属Au/CuO-HAP对苯甲醇氧化的催化活性和苯甲醛的选择性有显著提高,120 oC反应1.5 h,苯甲醇的转化率和苯甲醛的选择性分别达到99.7%和98.4%.在Au/CuO-HAP的催化下,其它类型的芳香醇均可高选择性转化为相应的醛或酮. Au/CuO-HAP催化剂有很好的稳定性和可回收性,4次回收后,其催化活性没有明显变化.  相似文献   

4.
Pd/SWNTs负载型催化剂的制备及其催化性能   总被引:3,自引:0,他引:3  
利用单壁碳纳米管(SWNTs)自身的还原性, 将PdCl2溶液中的Pd2+直接还原成金属Pd负载在SWNTs表面上, 制备了具有良好催化性能的Pd/SWNTs负载型催化剂. 通过透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和热重分析(TG)对Pd/SWNTs 进行了表征, 并利用Suzuki反应对Pd/SWNTs的催化性能进行了测试. 实验结果表明, 用SWNTs与12 mmol·L-1的PdCl2的水溶液直接作用, 得到Pd/SWNTs催化材料的Pd负载量达到14.13%(w, 质量分数), 颗粒分散均匀, 粒径小(2 nm左右), 与SWNTs结合紧密; 用经过H2还原的Pd/SWNTs作催化剂, 在90 ℃下进行Suzuki反应, 30 min后反应就基本完成, 其联苯的产率达到98.10%, 催化活性较高, 可望广泛用于有机合成反应.  相似文献   

5.
陈静  张庆红  方文浩  王野  万惠霖 《催化学报》2010,26(8):1061-1070
 研究了多种载体负载 Pd 催化剂上苯甲醇无氧脱氢反应. 结果发现, 以兼具较强酸性和碱性的水滑石 (HT) 为载体时, Pd 催化剂具有优异的苯甲醇转化活性和苯甲醛选择性, 当 Pd 含量为 0.32%~0.55% 时催化性能最佳. Pd/HT 催化剂可重复使用, 且对于含推电子取代基的芳香醇、2-噻吩甲醇、α,β-不饱和醇与环状脂肪醇等的直接脱氢反应均具有较好催化性能. HT 表面的 Pd(II) 物种反应后转变为平均粒径为 2.0~2.5 nm 的 Pd 纳米粒子或纳米簇. 具有较高分散度的 Pd(II) 物种易转变为较小的 Pd 纳米粒子, 从而具有较佳的催化性能. 本文推测, 催化剂表面的碱性位可促进苯甲醇 O–H 键的活化, 形成 Pd-苯甲氧基中间体, 该中间体进一步脱氢生成苯甲醛和 Pd-H 物种; 而催化剂表面的质子酸位可与 Pd-H 作用, 促进 H2 的脱除.  相似文献   

6.
The Pd(OAc)(2)/pyridine catalyst system is one of the most convenient and versatile catalyst systems for selective aerobic oxidation of organic substrates. This report describes the catalytic mechanism of Pd(OAc)(2)/pyridine-mediated oxidation of benzyl alcohol, which has been studied by gas-uptake kinetic methods and (1)H NMR spectroscopy. The data reveal that turnover-limiting substrate oxidation by palladium(II) proceeds by a four-step pathway involving (1) formation of an adduct between the alcohol substrate and the square-planar palladium(II) complex, (2) proton-coupled ligand substitution to generate a palladium-alkoxide species, (3) reversible dissociation of pyridine from palladium(II) to create a three-coordinate intermediate, and (4) irreversible beta-hydride elimination to produce benzaldehyde. The catalyst resting state, characterized by (1)H NMR spectroscopy, consists of an equilibrium mixture of (py)(2)Pd(OAc)(2), 1, and the alcohol adduct of this complex, 1xRCH(2)OH. These in situ spectroscopic data provide direct support for the mechanism proposed from kinetic studies. The catalyst displays higher turnover frequency at lower catalyst loading, as revealed by a nonlinear dependence of the rate on [catalyst]. This phenomenon arises from a competition between forward and reverse reaction steps that exhibit unimolecular and bimolecular dependences on [catalyst]. Finally, overoxidation of benzyl alcohol to benzoic acid, even at low levels, contributes to catalyst deactivation by formation of a less active palladium benzoate complex.  相似文献   

7.
A calcium vanadate apatite (VAp), in which PO4(3-) of hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is completely substituted by VO4(3-) in the apatite framework, was synthesized. Physicochemical analysis of the VAp reveals the presence of isolated VO4 tetrahedron units with a pentavalent oxidation state. The VAp acts as a high-performance heterogeneous base catalyst for various carbon-carbon bond-forming reactions such as Michael and aldol reactions in aqueous media and the H-D exchange reactions using deuterium oxide. For example, a 200-mmol-scale Michael reaction under triphasic conditions proceeded rapidly, with an extremely high turnover number of up to 260 400 and an excellent turnover frequency of 48 s(-1). No vanadium leaching was detected during the above reactions, and the catalyst was readily recycled with no loss of activity.  相似文献   

8.
采用共沉淀法制备了一系列不同Pd含量的PdO-CeO2复合氧化物催化剂, 并考察了该催化剂的CO低温氧化反应催化性能. 运用X射线衍射(XRD), 物理吸附(BET), CO化学吸附, 程序升温还原(TPR), 脉冲反应等技术对催化剂进行了表征. XRD结果表明, 焙烧温度从400 ℃升高到800 ℃, 有利于CexPd1-xO2-δ固溶体的形成. 然而焙烧温度升至1000 ℃时, 导致Pd从固溶体中析出. 催化剂的CO氧化活性(TOF)与CexPd1-xO2-δ固溶体的含量存在一定的对应关系. 随着CexPd1-xO2-δ固溶体含量的增加, CO氧化的TOF值大, 可见CexPd1-xO2-δ固溶体的形成对CO氧化活性有着主要的贡献. 在催化剂焙烧温度相同的条件下, 催化剂的CO氧化活性与Pd粒子大小无对应关系. 脉冲反应进一步说明PdOx的CO氧化活性高于金属Pd.  相似文献   

9.
The Forum Article critically summarizes investigations and discussions on the nature and role of potential active species in C-C coupling reactions of the Heck type using catalyst systems with "ligand-free" inorganic salts, simple inorganic complexes, and supported and nonsupported (colloidal) Pd particles. From a series of experiments and reports, it can be concluded that the "active species" is generated in situ in catalytic systems at higher temperature conditions (>100 degrees C). In all heterogeneous systems with solid Pd catalysts, Pd is dissolved from the solid catalyst surface under reaction conditions by a chemical reaction (complex formation and/or oxidative addition of the aryl halide), forming extremely active coordinatively unsaturated Pd species. Pd is partially or completely redeposited onto the support at the end of the reaction when the aryl halide is used up. The Pd dissolution-redeposition processes correlate with the reaction rate and are strongly influenced by the reaction conditions. Skilled preparation of the catalyst and careful adjustment of the reaction conditions allowed the development of highly active heterogeneous catalysts (Pd/C, Pd/metal oxide, and Pd/zeolite), converting aryl bromides and aryl chlorides in high yields and short reaction times. Reaction conditions have been developed allowing the conversion of bromobenzene with turnover numbers (TONs) of 10(7) and even of unreactive aryl chlorides (chlorobenzene and chlorotoluene) in high yields with simple "ligand-free" Pd catalyst systems like PdCl2 or Pd(OH)2 in the absence of any organic ligand. Simple coordinatively unsaturated anionic palladium halide (in particular, bromo) complexes [PdXn](m-) play a crucial role as precursor and active species in all ligand-free and heterogeneous catalyst systems and possibly in Heck reactions at all.  相似文献   

10.
A strategy for the mild deprotection of alkyl‐thiolated (6‐mercaptohexanoic acid, MHA, and 3‐mercaptopropanoic acid, MPA) gold nanoclusters (Au NCs) supported on hydroxyapatite (HAP) has been developed by employing a peroxide (tert‐butyl hydroperoxide, TBHP, or hydrogen peroxide, H2O2) as an oxidant. The thiol ligands on the supported Au NCs were removed after oxidation, and the size and integrity of the supported clusters were well‐preserved. The bare gold clusters on HAP after removal of the ligands were catalytically effective for the epoxidation of styrene and the aerobic oxidation of benzyl alcohol. These two reactions were also investigated on calcined Au NCs that were supported on HAP for comparison, and the resulting Au NCs that were prepared by using this new strategy showed superior catalytic activity.  相似文献   

11.
通过静电纺丝和热交联技术、以聚乙烯醇( PVA)作为载体制备了一种电纺纤维膜负载型钯催化剂.利用扫描电镜(SEM)、能谱仪(EDS)和X射线光电子能谱(XPS)对其进行了表征.SEM结果显示:PdCl2的加入导致PVA纤维直径增加、形貌变差,而热交联过程可以减小纤维直径、改善纤维形貌.XPS表征则表明PVA可以还原pd...  相似文献   

12.
Pd(OAc)(2) in DMSO is an effective catalyst for the aerobic oxidation of alcohols and numerous other organic substrates. Kinetic studies of the catalytic oxidation of primary and secondary benzylic alcohol substrates provide fundamental insights into the catalytic mechanism. In contrast to the conclusion reached in our earlier study (J. Am. Chem. Soc. 2002, 124, 766-767), we find that Pd(II)-mediated alcohol oxidation is the turnover-limiting step of the catalytic reaction. At elevated catalyst loading, however, the rate of catalytic turnover is limited by the dissolution of oxygen gas into solution. This mass-transfer rate is measured directly by using gas-uptake methods, and it correlates with the maximum rate observed during catalysis. Initial-rate studies were complemented by kinetic analysis of the full-reaction timecourses at different catalyst concentrations. Kinetic fits of these traces reveal the presence of unimolecular and bimolecular catalyst decomposition pathways that compete with productive catalytic turnover.  相似文献   

13.
张萍波  周燕  范明明  蒋平平 《催化学报》2015,(11):2036-2043
催化反应活性与催化剂活性组分的存在价态密切相关,所以探讨催化剂在反应过程中的活性中心及其价态变化,对于催化反应机理和催化剂的研究都显得十分重要.目前对于氧化羰基合成碳酸二甲酯催化剂的机理的探讨很多,主要存在的争议是Cu+还是Cu2+作为活性中心,以及铜物种的配位状态.大多体系都是以分子筛为载体的铜基催化剂,其活性中心的研究存在铜离子在分子筛中的定位问题,而且催化活性也会受到分子筛结构的影响.采用这种方法研究活性中心的影响因素较多,存在一定的局限性.因此,直接制备纳米级的铜基氧化物用于本催化体系,有利于更直观简单地探索其活性中心.纳米级金属氧化物材料是一种新型的功能性材料,而纳米铜基氧化物(CuO和Cu2O)因其独特的物化性质和结构而引起广泛关注.我们采用水热法制备纳米CuO及其它氧化物,研究了NaOH浓度对催化剂的催化性能的影响;葡萄糖是一种还原性较强的还原剂,其用量必定会对所制备的氧化物的物种有所影响.为了探究Cu0和Cu+在本体系中的作用,采用不同葡萄糖用量制备了具有不同Cu2O含量的PdCl2/Cu-Cu2O催化剂.在上述研究基础上,我们采用X射线衍射、场发射扫描电子显微镜、热重分析、等离子体原子发射光谱等表征手段研究了负载型纳米铜基氧化物催化剂在合成碳酸二乙酯反应中催化性能差异的原因,旨在直接考察活性中心主要是Cu+还是Cu2+,避免分子筛等体系中载体结构的影响,研究结果更具参考性.结果发现, NaOH浓度为5 mol/L时制备的PdCl2/CuO和PdCl2/Cu-Cu2O催化剂的性能优于其他浓度下制备的催化剂,这可能是由于不同浓度的碱溶液会对铜离子的沉淀过程产生不同的影响;相同NaOH浓度下制备的催化剂中, PdCl2/Cu-Cu2O催化剂的催化性能明显优于PdCl2/CuO催化剂,这可能是由于PdCl2/Cu-Cu2O催化剂更有利于反应过程中电子的传递,从而表现出更好的催化性能,我们推测Cu0和Cu+可能更有利催化乙醇氧化羰基合成DEC;表征分析发现PdCl2/CuO和PdCl2/Cu-Cu2O均具有很好的热稳定性,两种催化剂中PdCl2负载量几乎相同,因此,主要影响催化性能的因素是载体CuO和Cu-Cu2O中铜的价态.采用不同葡萄糖用量制备了含有不同Cu2O含量的PdCl2/Cu-Cu2O催化剂,其中, PdCl2/Cu-Cu2O-2催化剂中含有更多的Cu2O,在反应中乙醇转化率达到了7.2%, DEC的选择性为97.9%, DEC的时空收率可达到151.9 mg·g–1·h–1.由此可见在乙醇气相氧化羰基合成DEC体系中, Cu+是主要的活性中心.  相似文献   

14.
Metalloenzymes are essential proteins with vital activity that promote high-efficiency enzymatic reactions. To ensure catalytic activity, stability, and reusability for safe, nontoxic, sustainable chemistry, and green organic synthesis, it is important to develop metalloenzyme-inspired polymer-supported metal catalysts. Here, we present a highly active, reusable, self-assembled catalyst of poly(imidazole-acrylamide) and palladium species inspired by metalloenzymes and apply our convolution methodology to the preparation of polymeric metal catalysts. Thus, a metalloenzyme-inspired polymeric imidazole Pd catalyst (MEPI-Pd) was readily prepared by the coordinative convolution of (NH(4))(2)PdCl(4) and poly[(N-vinylimidazole)-co-(N-isopropylacrylamide)(5)] in a methanol-water solution at 80 °C for 30 min. SEM observation revealed that MEPI-Pd has a globular-aggregated, self-assembled structure. TEM observation and XPS and EDX analyses indicated that PdCl(2) and Pd(0) nanoparticles were uniformly dispersed in MEPI-Pd. MEPI-Pd was utilized for the allylic arylation/alkenylation/vinylation of allylic esters and carbonates with aryl/alkenylboronic acids, vinylboronic acid esters, and tetraaryl borates. Even 0.8-40 mol ppm Pd of MEPI-Pd efficiently promoted allylic arylation/alkenylation/vinylation in alcohol and/or water with a catalytic turnover number (TON) of 20,000-1,250,000. Furthermore, MEPI-Pd efficiently promoted the Suzuki-Miyaura reaction of a variety of inactivated aryl chlorides as well as aryl bromides and iodides in water with a TON of up to 3,570,000. MEPI-Pd was reused for the allylic arylation and Suzuki-Miyaura reaction of an aryl chloride without loss of catalytic activity.  相似文献   

15.
The methoxycarbonylation of alkenes catalyzed by palladium(II) complexes with P,N-donor ligands, 2-(diphenylphosphinoamino)pyridine (Ph2PNHpy), 2-[(diphenylphosphino)methyl]pyridine (Ph2PCH2py), and 2-(diphenylphosphino)quinoline (Ph2Pqn) has been investigated. The results show that the complex [PdCl(PPh3)(Ph2PNHpy)]Cl or an equimolar mixture of [PdCl2(Ph2PNHpy)] and PPh3, in the presence of p-toluensulfonic acid (TsOH), is an efficient catalyst for this reaction. This catalytic system promotes the conversion of styrene into methyl 2-phenylpropanoate and methyl 3-phenylpropanoate with nearly complete chemoselectivity, 98% regioselectivity in the branched isomer, and high turnover frequency, even at alkene/Pd molar ratios of 1000. Best results were obtained in toluene-MeOH (3 : 1) solvent. The Pd/Ph2PNHpy catalyst is also efficient in the methoxycarbonylation of cyclohexene and 1-hexene, although with lower rates than with styrene. Related palladium complexes [PdCl(PPh3)L]Cl (L = Ph2PCH2py and Ph2Pqn) show lower activity in the methoxycarbonylation of styrene than that of the 2-(diphenylphosphinoamino)pyridine ligand. Replacement of the last ligand by (diphenylphosphino)phenylamine (Ph2PNHPh) or 2-(diphenylphosphinoaminomethyl)pyridine (Ph2PNMepy) also reduces significantly the activity of the catalyst, indicating that both the presence of the pyridine fragment as well as the NH group, are required to achieve a high performing catalyst. Isotopic labeling experiments using MeOD are consistent with a hydride mechanism for the [PdCl(PPh3)(Ph2PNHpy)]Cl catalyst.  相似文献   

16.
采用浸渍法在温和条件下制备了羟基磷灰石负载的铱催化剂(Ir/HAP), 并以X射线衍射(XRD), 透射电子显微镜(TEM), X射线光电子能谱(XPS), 比表面积测定(BET)以及附带能量散射X射线谱的扫描电子显微镜(SEM-EDS)等手段对载体和催化剂进行了表征. 以(1S,2S)-1,2-二苯基乙二胺((1S,2S)-DPEN)为手性修饰剂时, 该催化剂对苯乙酮及其衍生物不对称加氢反应表现出较高活性和对映选择性(ee). 在氢气压力为3.0 MPa、303 K条件下反应3 h, 苯乙酮及其衍生物的加氢转化率在94.7%以上, 其中生成2'-(三氟甲基)苯乙醇的对映选择性高达81.5%. 在不使用其它配体作稳定剂的情况下, 该结果比目前文献报道值高. 通过对比研究发现, 羟基磷灰石作为载体优于二氧化硅等其它无机载体. 催化剂通过简单离心分离可循环使用多次, 无明显的金属铱流失.  相似文献   

17.
(PdCl2—PVP)/Al2O3催化剂中Pd状态的探讨   总被引:3,自引:0,他引:3  
刘菁  李灿 《分子催化》1992,6(1):32-37
氯化钯先锚定在聚乙烯吡咯烷酮上后进一步负载到Al_2O_3上所制的催化剂[简称(PdCl_2-PVP)/Al_2O_3]是一种活性、选择性高,稳定性好的烯烃、二烯烃和多烯烃加氢催化剂。本文结合加氢反应,使用XPS、FT-IR、电镜及用CO为探针的FT-IR,对这种催化剂进行了考察。实验说明,在这种催化剂中,钯的价态是在0—2之间。红外光谱在486cm~(-1)处有一微弱的小峰,说明存在Pd—N的配位键。催化剂中钯含量低时(0.2wt%)稳定性好,不吸附CO,活性中心是络合钯原子;当钯含量较高时(0.7wt%),催化剂的初活性虽不低,稳定性却较差,这种催化剂能吸附CO,IR谱图上仅在1919cm~(-1)处有CO桥式吸附态的伸缩振动。表明除络合钯原子外,还有聚集的钯金属存在。FT-IR尚表明,PVP在Al_2O_3上可能并非单纯的物理吸附。电镜结果表明,PVP在Al_2O_3上呈30—70(?)的微球状,(PdCl_2-PVP)/Al)_2O_3上的(PdCl_2-PVP)亦呈微球状,与前者无明显区别,这种催化剂中其活性中心是络合钯原子。  相似文献   

18.
Transition metal complexes have been used extensively for the hydrogenation in homogeneous system probably due to their high catalytic selectivities under mild operating conditions. In order to improve the homogeneous catalyst system, some studies on the homogeneous or soluble polymer-supported bimetallic catalysts have been recently carried out and enhanced activity, better selectivity were observed in selective hydrogenation, hydrodehalogenation, carbonylation, hydroformylation and regioselec…  相似文献   

19.
We report a nanocarbon material with nanodiamond(ND) core and graphene shell(ND@G) as a support for Pd nanocatalysts. The designed catalyst performed good selectivity of styrene(85.2%) at full conversion of phenylacetylene and superior stability under mild conditions. Supported Pd catalysts are characterized by means of high resolution transmission electron microscopy(HRTEM), Raman, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and H_2 temperature-programmed reduction(H_2-TPR).The results clearly show that formation of the strong metal-support interaction(SMSI) between Pd nanoclusters and the defective graphene shell helpfully modifies the selectivity and stability of the Pd-based catalysts.  相似文献   

20.
This paper describes further studies on mono- and bi-metallic catalysts attached to a polymer support by β-di- and tri-ketone surface ligands. The previous two papers described the oxidation of catechol by the heterogeneous catalysts using Cu(II), Fe(III) and Pd(II) as the metal species. The present study expands these studies to a series of mono- and polyfunctional alcohols using Pd(II) as the metal species. The final catalytic surfaces were prepared by treatment of the modified polymer with a very reactive form of Pd(II), [Pd(CH3CN)4]2+. The simple alcohols gave increases in rates of up to 5-fold for the bimetallic systems. As might be expected glycols and - -glucose gave even higher increases in rate in going from the mono- to the bi-metallic catalyst. For ethylene glycol the factor was 30. Unsaturated alcohols gave the most dramatic results. With the monometallic catalyst, the products from allyl alcohol consisted of 25% acrolein resulting from direct alcohol oxidation and 75% 3-hydroxypropanal resulting from Wacker-type oxidation of the double bond. With the bimetallic catalyst the overall rate increased by a factor of 10 and the products consisted of 80% acrolein and 20% 3-hydroxypropanal. The actual rate increase for the direct alcohol oxidation is calculated to be a factor of 32. 4-Penten-2-ol and 4-penten-1-ol gave rates that were lower than the monofunctional alcohols. This is attributed to inhibition by olefin π-complex formation with the Pd(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号