首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2–300 K were analysed in the Debye–Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.  相似文献   

2.
分别用稀土醋酸盐和稀土高氯酸盐与希弗碱配体和巯基烟酸配体反应得到了两例镝配合物[Dy2(OAc)6H2O]n(1)和{[DyL(H2O)4]ClO4·H2O}n(2)(L=2,2'-二硫代-二(3-吡啶甲酸)),并通过单晶X-射线衍射、元素分析、红外光谱和磁性测试对其进行了表征。结构研究和磁性测试表明:化合物1是羧基桥连的一维链结构,该化合物表现出慢磁弛豫性质,有效能垒为2 K;化合物2是通过原位生成的二硫键桥连的二维网状结构,表现出明显的铁磁相互作用和慢磁弛豫行为。  相似文献   

3.
Dysprosium hafnate is a candidate material for as control rods in nuclear reactor because dysprosium (Dy) and hafnium (Hf) have very high absorption cross-sections for neutrons. Dysprosium hafnate (Dy2O3·2HfO2-fluorite phase solid solution) was prepared by solid-state as well as wet chemical routes. The fluorite phase of the compound was characterized by using X-ray diffraction (XRD). Thermal expansion characteristics were studied using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1973 K. Heat capacity measurements of dysprosium hafnate were carried out using differential scanning calorimetry (DSC) in the temperature range 298–800 K. The room temperature lattice parameter and the coefficient of thermal expansion are 0.5194 nm and 7.69 × 10−6 K−1, respectively. The heat capacity value at 298 K is 232 J mol−1 K−1.  相似文献   

4.
Three dinuclear dysprosium(III) complexes, [Dy2L2(O2CPh)2]?2 MeOH ( 1 ), [Dy2L2{(2‐NO2)O2CPh}2] ( 2 ), and [Dy2L2{(2‐OH)O2CPh}2] ? MeOH ? MeCN ( 3 ) (H2L=N1,N3‐bis(4‐chlorosalicyladehyde)diethylenetriamine), have been synthesized and structurally characterized. Complexes 1 – 3 possess similar Ln2 cores and differ in substituents at the benzyl rings of benzoates. Direct current (dc) magnetic susceptibility studies in the 2–300 K range showed weak antiferromagnetic interactions between two dysprosium(III) ions in 1 – 3 . The alternating current (ac) magnetic susceptibility measurements indicated that they all exhibited SMM behavior. The strategic attachment of the ?NO2 group (in 2 ) and the ?OH functionality (in 3 ) on the skeleton of the benzoic acid led to subtle variations of the bond lengths and bond angles in the coordination environments of the central dysprosium(III) ions, consequently resulting in the enhancement of the energy barriers for 2 and 3 . Complete‐active‐space self‐consistent field (CASSCF) calculations were employed to rationalize the experimental outcomes. Theoretical calculations confirm the existence of antiferromagnetic interactions in 1 – 3 , and the calculated dc magnetic susceptibility data agree well with those obtained experimentally. The computational results reveal more axial g tensors, as well as higher first excited Kramers doublets in 2 and 3 ; thus resulting in higher energy barriers in compounds 2 and 3 .  相似文献   

5.
The heat capacity, thermodynamic properties of fusion, and purity of the ethyl ester of butanoic acid were determined by adiabatic calorimetry in the temperature range from 8 to 372 K. The pT-parameters of the ester for the equilibrium liquid-vapor were measured by comparative ebulliometry in the “atmospheric” range of pressure from 10.8 to 101.7 kPa. The obtained data were used to derive the normal boiling temperature (T n.b), the enthalpies of vaporization at T = 298.15 K and T n.b, and the main thermodynamic functions (changes of S, H, G) in the crystal and liquid states of the temperature interval studied and in the ideal gas state at T = 298.15 K. The experimental vapor pressures of the narrow temperature interval, ΔT = 62 K were extended to the entire range of the liquid, T crT tp0 = 394.3 K, from the triple, T tp0, to the critical, T cr, temperatures.  相似文献   

6.
The temperature dependence of heat capacity of the polycrystalline sample of cobalt(II) clathrochelate in a range of 6–300 K is studied. Based on the smoothed dependence C p(T), the entropy and enthalpy values in a temperature range of 8–300 K and their standard values at 298.15 K are calculated. In the C p(T) curve in a range of 50–70 K, a process is recorded whose entropy and enthalpy are 1.2 J·(K·mol−1) and 68 J·mol−1 respectively. A comparison of the results with the data of a multitemperature X-ray diffraction study makes it possible to attribute this process to the structural phase transition.  相似文献   

7.
Scandium dysprosium antimonide ScDySb was synthesized from scandium metal and DySb in an all‐solid state reaction at 1770 K. According to X‐ray analysis of the crystal structure [P4/nmm, Z = 4, a = 430.78(1) pm, c = 816.43(4) pm, R1 = 0.0238, wR(all) = 0.0688, 268 independent reflections], ScDySb adopts the anti‐PbFCl type of structure, but with pronounced deviations in structural details, which are related to specific bonding interactions between the atoms involved. ScDySb shows antiferromagnetic ordering below 35.4 K, which was verified by susceptibility, heat capacity, and resistivity measurements. X‐ray structure determination, performed at 30 K, showed no significant structural changes to occur during the magnetic phase transition. The band structure was calculated in the framework of Density Functional Theory. The bonding properties are comparable to those of Sc2Sb. Pronounced basins of the Electron Localization Function (ELF) appear in the tetragonal pyramidal Sc4Dy voids.  相似文献   

8.
近几十年来,烟酸盐类化合物或配合物由于优越的吸收率高和无毒副作用等特点使其在化妆品、药品和食品等领域作为营养添加剂具有重要应用前景。然而,这类化合物的基础热力学数据极其缺乏,从而限制了这类化合物的理论研究和应用开发的深入开展。为此,本论文利用室温固相合成方法和球磨技术合成了一种新化合物Cu(Nic)2•H2O(s),利用化学分析、元素分析、FTIR和X-射线粉末衍射技术表征了它的结构和组成,利用精密自动绝热热量计准确地测量了它在78-400 K温区的摩尔热容。在热容曲线的T = 326-346 K温区观察到一个明显的固-液相变过程。利用相变温区三次重复实验热容的测量结果确定了此相变过程的峰温、相变焓和相变熵分别为:Tfus=(341.290 ±0.873) K, DfusHm=(13.582±0.012) kJ×mol-1, DfusSm=(39.797±0.067) J×K-1×mol-1。通过最小二乘法将相变前和相变后的热容实验值分别拟合成了热容对温度的两个多项式方程。通过热容多项式方程的数值积分,得到了这个化合物的舒平热容值和相对于298.15 K的各种热力学函数值,并且将每隔5 K的热力学函数值列成了表格。  相似文献   

9.
Theoretical predictions of hightemperature superconductivity (HTSC) in titanium borides, TiBk, have been experimentally verified. These predictions have been reported previously in the form of theoretical phase diagrams. They predicted the existence of HTSC in TiB k (1.43 < k < 2.57) phases and in TiB1.5–1.6. An abrupt decrease at 110 K was found on the temperature curve of conductivity R(T) for titanium samples whose surfaces were coated with diffuse layers of depthvariable boride compositions TiB k . This indicates that the layers include phases possessing HTSC. This behavior of the R(T) curves is explained assuming that the inclusions of HTSC phases have a strong effect on the resistance of the composite materials at Tc. The composition of the boride layers has been investigated by mass spectrometry. Diffuse boride layers were applied to titanium surface by treating its surface with a B2H6 + H2 gas mixture at 610–700°C followed by annealing in vacuum.  相似文献   

10.
The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice.  相似文献   

11.
The published data on the heat capacity of tin telluride were analyzed. The C p values were demonstrated to be consistent only at temperatures below 56 K. Some data on the heat capacity of SnTe within 80–453 K were found to differ significantly. The heat capacity C p was measured on a DSM-2M calorimeter within a temperature range of 350–600 K and other thermodynamic functions of tin telluride were calculated.  相似文献   

12.
A dichlorido-bridged dinuclear dysprosium(III) single-molecule magnet [Dy2L2(μ-Cl)2(thf)2] has been made by using a diamine-bis(phenolate) ligand, H2L. Magnetic studies show an energy barrier for magnetisation reversal (Ueff) around 1000 K. An exchange-biasing effect is clearly seen in magnetic hysteresis with steps up to 3 K. Ab initio calculations exclude the possibility of a pure dipolar origin of this effect leading to the conclusion that super-exchange through the chloride bridging ligands is important.  相似文献   

13.
Efficient modulation of single‐molecule magnet (SMM) behavior was realized by deliberate structural modification of the Dy2 cores of [Dy2( a ′ povh )2(OAc)2(DMF)2] ( 1 ) and [Zn2Dy2( a′povh )2(OAc)6] ? 4 H2O ( 2 ; H2 a ′ povh =N′‐[amino(pyrimidin‐2‐yl)methylene]‐o‐vanilloyl hydrazine). Compound 1 having fourfold linkage between the two dysprosium ions shows high‐performance SMM behavior with a thermal energy barrier of 322.1 K, whereas only slow relaxation is observed for compound 2 with only twofold connection between the dysprosium ions. This remarkable discrepancy is mainly because of strong axiality in 1 due to one pronounced covalent bond, as revealed by experimental and theoretical investigations. The significant antiferromagnetic interaction derived from bis(μ2‐O) and two acetate bridging groups was found to be crucial in leading to a nonmagnetic ground state in 1 , by suppressing zero‐field quantum tunneling of magnetization.  相似文献   

14.
The temperature dependence of heat capacity C p ° = f(T) of triphenylantimony bis(acetophenoneoximate) Ph3Sb(ONCPhMe)2 was measured for the first time in an adiabatic vacuum calorimeter in the range of 6.5–370 K and a differential scanning calorimeter in the range of 350–463 K. The temperature, enthalpy, and entropy of fusion were determined. Treatment of low-temperature (20 K ≤ T ≤ 50 K) heat capacity was performed on the basis of Debye’s theory of the heat capacity of solids and its multifractal model and, as a consequence, a conclusion was drawn on the type of structure topology. Standard thermodynamic functions C p °(T), H°(T) — H°(0), S°(T), and G°(T) — H°(0) were calculated according to the experimental data obtained for the compound mentioned in the crystalline and liquid states for the range of T → 0–460 K. The standard entropy of the formation of crystalline Ph3Sb(ONCPhMe)2 was determined at T = 298.15 K.  相似文献   

15.
The heat capacities of four RE isothiocyanate hydrates, Sm(NCS)3, · 6H20, Gd(NCS)3 · 6H20, Yb(NCS)3, · 6H2O and Y(NCS)3, · 6H20, have been measured from 13 to 300 K with a fully-automated adiabatic calorimeter. No obvious thermal anomaly was observed for the above-mentioned compounds in the experimental temperature ranges. The polynomial equations for calculating the heat capacities of the four compounds in the range of 13–300 K were obtained by the least-squares fitting based on the experimentalC P, data. TheC P, values below 13 K were estimated by using the Debye-Einstein heat capacity functions. The standard molar thermodynamic functions were calculated from 0 to 300 K. Gibbs energies of formation were also calculated. Project supported by the National Natural Science Foundation of China.  相似文献   

16.
The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

17.
Stannates Dy2Sn2O7 and Ho2Sn2O7 are produced by solid-phase synthesis from Dy2O3 (Ho2O3)–SnO2 stoichiometric mixtures by calcining at 1473 K. The molar heat capacity of holmium and dysprosium stannates is measured by differential scanning calorimetry (DSC) in the temperature range 370–1000 K. The experimental data are used to calculate thermodynamic properties (enthalpy change H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and the reduced Gibbs free energy Φ°(T)) of the synthesized compound.  相似文献   

18.
Abstract

The 1H-NMR spectra of liquid binary mixtures of acetonitrile and propan-2-ol, were recorded at 298 K over almost the whole range of the mixed solvent compositions. From these data were found the values of the spectral parameter, Δδ(ACN-PrOH-2). The densities (d 12) and relative permittivities (?12) of the mixed solvent were measured at 288.15K, 293.15K, 298.15K, 303.15K and 308.15K, as well as refractive indices at 298.15K. From all these data, the molar volumes (V m), temperature coefficients of relative permittivities (αn) and their deviations from ideality were calculated. Additionally, the Kirkwood's correlation factors (g K) were found. The values of these properties are discussed in terms of interactions of acetonitrile with propan-2-ol.  相似文献   

19.
Heat capacity of methacetin (N-(4-methoxyphenyl)-acetamide) has been measured in the temperature range 5.8–300 K. No anomalies in the C p(T) dependence were observed. Thermodynamic functions were calculated. At 298.15 K, the values of entropy and enthalpy are equal to 243.1 J K−1 mol−1 and 36360 J mol−1, respectively. The heat capacity of methacetin in the temperature range 6–10 K is well fitted by Debye equation C p = AT 3. The thermodynamic data obtained for methacetin are compared with those for the monoclinic and orthorhombic polymorphs of paracetamol.  相似文献   

20.
The isobaric heat capacity of Tm2O3 · 2ZrO2 solid solution was measured by adiabatic calorimetry and differential scanning calorimetry (DSC), and smoothed values of the enthalpy changes, entropy, and reduced Gibbs free energy in the temperature range 8–1200 K were calculated. Thermal expansion was studied by X-ray diffraction in the temperature range 298–1173 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号