首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental measurements of the liquid-air interfacial tension are reported for the systems benzene + n-hexane at 20°C and acetone + isooctane at 25°C. The excess surface tension for both systems is negative while the surface tension itself for the second system, when plotted against composition, exhibits a flat minimum. An attempt is made to interpret this behavior in terms of basic thermodynamic quantities of the mixtures such as the excess free enthalpy, the heat of mixing, the excess volume, and the isothermal compressibility.  相似文献   

2.
This article presents the analysis of the following physical properties such as refractive indices, excess molar volumes, sound velocity and the temperature dependence of the ternary system ethanol?+?n-hexane?+?n-octane in the temperature range 288.15–323.15?K at atmospheric pressure. The derived properties are calculated from data obtained experimentally and fitted to Cibulka equation.  相似文献   

3.
We measured the interfacial tension and the density of air/n-hexane, n-decane, 1-perfluorohexane/1-hexyl-3-methyl-imidazolium hexafluorophosphate systems as a function of temperature. From the air/ionic liquid surface tension values, it was suggested that Coulombic interaction between imidazolium cations and counter anions are not so much different between the surface and bulk. The density values indicated that the decrease of surface tension by saturating organics was closely correlated to the mutual solubility between ionic liquid and organics. Interfacial tension at the oil/ionic liquid interfaces suggested that ionic liquid molecules were more ordered at the oil/ionic liquid interfaces compared to the air/ionic liquid interfaces, but the decrease of the entropy due to the interfacial orientation of ionic liquid was compensated by the increase of the entropy due to the contact of different chemical species. The initial spreading coefficients and the Hamaker constants indicated that all the oil phases spread at the air/ionic liquid interfaces spontaneously, and form the complete wetting films.  相似文献   

4.
Density functional theory is combined with the modified SAFT-BACK EOS to investigate liquid–vapor interfaces of n-alkanes. We evaluate the temperature dependence of the interfacial width and the surface tension. Differences in chain length of the alkanes lead to differences in the thermodynamic properties of the fluids. A single curve for the reduced width of the interface as a function of reduced temperature serves to correlate interfacial properties of a wide variety of linear chain fluids (excluding methane and ethane) with sufficient accuracy for our purposes.  相似文献   

5.
Densities have been obtained as a function of composition for ternary-pseudobinary mixtures of [(benzene + tetrachloromethane or n-hexane) + (cyclohexane + tetrachloromethane or n-hexane)] at atmospheric pressure and the temperature 298.15 K, by means of a vibrating-tube densimeter. Excess molar volumes, VmE, partial molar volumes and excess partial molar volumes were calculated from the density data. The values of VmE have been correlated using the Redlich–Kister equation and the coefficients and standard errors were estimated. The experimental and calculated quantities are used to discuss the mixing behavior of the components. The results show that the third component, CCl4 or n-C6H14, have quite different influences on the volumetric properties of binary liquid mixtures of benzene with cyclohexane.  相似文献   

6.
Poly (ethylene terephthalate), PET, waste was recycled to oligomers in the presence of triethanolamine and manganese acetate as a catalyst. The produced oligomers were reacted with stearic acid and polyethylene glycol having different molecular weights 400, 1000, and 4000 to produce nonionic polymeric surfactants having different hydrophile‐hydrophobe balances (HLB). The surface tension, critical micelle concentration (CMC) and surface activities were determined at different temperatures. Surface parameters such as, surface excess concentration Γmax, the area per molecule at interface Amin and the effectiveness of surface tension reduction (ΠCMC) were determined from the adsorption isotherms of the prepared surfactants. Some thermodynamic data for the adsorption process are calculated and discussed.  相似文献   

7.
The suitability of n-hexane and n-octane as reactant gases in chemical ionization mass spectrometry has been investigated. The mass spectra of these substances have been investigated as a function of pressure up to 2·4 Torr for n-hexane and 1·7 Torr for n-octane. The major ion present in n-hexane at 0·8 Torr is [C6H13]+ (m/e 85) with a relative intensity of 0·65. In n-octane at 0·8 Torr the major ions are [C8H17]+ (m/e 113), [C6H13]+ (m/e 85) and [C5H11]+ (m/e 71). The relative intensities of these ions are 0·38, 0·12 and 0·19, respectively. These alkyl ions in both n-hexane and n-octane are thought to have tertiary structures. Rate constants for the rates of reaction of the primary ions in the two compounds have been determined. The n-hexane chemical ionization spectra of 26 compounds were determined. The spectra of polar compounds are dominated by proton transfer, whereas those of nonpolar compounds exhibit proton transfer and in addition often surprisingly large amounts of electron transfer. The n-octane chemical ionization spectra of 15 compounds were determined and the spectra in general are quite similar to those obtained with n-hexane. n-Hexane and n-octane can be used as reagents in analytical chemical ionization mass spectrometry, but except in certain specialized uses they would probably have no advantage over i-butane.  相似文献   

8.
Abstract

Density, viscosity and surface tension of two binary liquid systems: 2-butanone + n-propionic acid, 2-butanone + n-butyric acid have been determined at 20, 30 and 40°C, over the whole compositional range. The excess values of molar volume, viscosity, Gibbs free energy for the activation of flow and surface tension were evaluated. These excess values were fitted to a Redlich-Kister type of equation. The Grunberg-Nissan parameter, d, was also calculated. The binary viscosity data were fitted to the models of McAllister, Heric, Auslander and Teja and Rice. Surface tension data were fitted to the models of Zihao and Jufu, Rice and Teja, and an empirical two-constant model proposed in this study.  相似文献   

9.
Ester-adduct derivatives of rosin were synthesized by reacting rosin maleic anhydride (RMA) or rosin acrylic acid (RAA) adducts with polyethylene glycol 600 (PEG600), 1000 (PEG1000) or 2000 (PEG2000) and at elevated temperature. These derivatives were evaluated for acid number, FTIR spectroscopy, molecular weight (Mw) and polydispersity. The surface properties of the prepared surfactants were determined by measuring the surface tension at different temperatures. The surface tension, critical micelle concentration, and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin) and the effectiveness of surface tension reduction (πCMC) were determined from the adsorption isotherms of the prepared surfactants. Some thermodynamic data for the adsorption process were calculated and are discussed.  相似文献   

10.
Using the Picker flow microcalorimeter, excess heat capacities have been obtained at 25°C throughout the concentration range for 2,2-dimethylbutane,n-hexane, and cyclohexane each mixed with a series of hexadecane isomers of increasing degrees of orientational order, as determined by depolarized Rayleigh scattering. The isomers are 2,2,4,4,6,8,8-heptamethylnonane, 6-, 4-, and 2-methylpentadecane, andn-hexadecane. Thec p E values are negative, increasing rapidly in magnitude with increase of orientational order, and are not predicted by the Prigogine—Flory theory which neglects order. Values ofc p E are obtained at 10, 25, and 55°C for cyclohexane +6-, 4-, and 2-methylpentadecane which with other literature data lead to the temperature dependence of the thermodynamic excess functions for cyclohexane solutions of the five C16 isomers. The excess enthalpy and entropy vary with the C16 isomer and with temperature, but the corresponding variation of the excess free energy is small, indicating a high degree of enthalpy-entropy compensation. This is consistent with a rapid decrease with temperature of orientational order in the C16 isomers.  相似文献   

11.
IR reflection-absorption spectroscopy was used to examine the regularities of radiation-stimulated absorption of n-hexane on an aluminum surface. γ-Irradiation of an aluminum surface at room temperature produces sites capable of adsorbing n-hexane by the molecular and dissociative mechanisms. The kinetics of the adsorption of n-on aluminum γ-irradiated with doses of 5 to 25 Gy is indicative of activated dissociative chemisorption accompanied by the formation of aluminum alkyls and surface hydrides. A feasible mechanism for the process was proposed.  相似文献   

12.
  1. TheF/A-isotherms of homologous cholesteryl esters of fatty acids (n=1–4) show that in the temperature region between 288,15–313,15 K only condensed films exist. Esters withn 5 do not form stable monolayers.
  2. The concentration dependence of compression curves of the four binary systems cholesteryl formiate/stearic acid (1), cholesteryl acetate/stearic acid (2), cholesteryl-n-propionate/stearic acid (3) and cholesteryl-n-butyrate/stearic acid (4) is only slightly different atT=298,15 K. The systems (1) and (2) differ in the region of high concentrations of stearic acid, as indicated in the occurrence of the bendsK 2. Whole the compression curves of mixtures correspond to a condensed film.
  3. The excess areasA E as function of concentrations of the systems (1), (2) and (4) show dilatation in the region of high concentrations of stearic acid and contraction in the region of increasing concentrations of cholesteryl esters.
  相似文献   

13.
Hydrophobically modified polyacrylamide (PAAm) was prepared by grafting PAAm with block copolymer of poly(ethylene oxide) and poly(propylene oxide), PEO‐PPO‐PEO, by melt method in the presence of benzoyl peroxide as initiator. The chemical structure of the graft copolymer was determined by FTIR and 1HNMR analyses. The surface tension, critical micelle concentration, and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin), and the effectiveness of surface tension reduction (ΠCMC) were determined at different temperatures from the adsorption isotherms of the prepared surfactants. The prepared surfactant was tested as emulsifier for water with xylene, cyclohexane, or petroleum crude oil synthetic emulsions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Molar excess volumes at 298.15 K and atomospheric pressure for tripropylamine + n-hexane, + n-octane, + n-decane, + n-dodecane or + n hexadecane systems determined from densities measured with an Anton-Paar DMA 602 vibrating-tube densimeter are reported. N,N,N-trialkylamine + n-alkane systems have been studied using the Flory theory. Better results on excess enthalpies are obtained when the difference in size between the mixture components is large.

The dependence of the excess volume at equimolar composition with the length of the n-alkane is correctly described. The simultaneous analysis of the experimental excess volumes and of the excess enthalpies reveal that free volume effects are important in systems formed by triethylamine or tripropylamine and longer alkanes, as well as in those involving tripropylamine or tributylamine and the shorter alkanes.

The Patterson effect is present in the studied mixtures. The more globular amines, triethylamine, tripropylamine or tributylamine are order breakers of the longer alkanes. The amines of very large size, e.g., tridodecylamine, show an ordered structure.  相似文献   

15.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

16.
Chlorided 0.57 wt. % Pt/γ-Al2O3 is a moderately active and highly selective catalyst for the isomerization of n-hexane at 300 °C when an excess of H2 is present. Chlorine, which is continuously lost from the catalyst, may be replaced by adding a small amount of chloroform to the reactant stream. The catalyst exhibits activity and high isomerization selectivity even at 150 °C. Under the conditions of these lower temperature experiments, the equilibrium concentration of C6 alkenes would be only 8 × 10?7 Torr. This suggests that the classical mechanism, which involves the formation of n-hexene on the Pt, is not applicable. Rather, it is proposed that isomerization of the alkane occurs at acid sites on the catalyst, and the role of Pt is to catalyze the hydrogenation of any alkenes that might be formed as a result of cracking reactions. At temperatures ≤ 300 °C Brönsted acid sites are present in the catalyst, and presumably are responsible for the isomerization and cracking activity, but at higher temperatures Lewis acid sites play a dominant role.  相似文献   

17.
The surface tension of the air—water interface increases upon addition of inorganic salts, implying a negative surface excess of ionic species. Most acids, however, induce a decrease in surface tension, indicating a positive surface excess of hydrated protons. In combination with the apparent negative charge at pure air–water interfaces derived from electrokinetic experiments, this experimental observation has been a source of intense debate since the mid‐19th century. Herein, we calculate surface tensions and ionic surface propensities at air–water interfaces from classical, thermodynamically consistent molecular dynamics simulations. The surface tensions of NaOH, HCl, and NaCl solutions show outstanding quantitative agreement with experiment. Of the studied ions, only H3O+ adsorbs to the air–water interface. The adsorption is explained by the deep potential well caused by the orientation of the H3O+ dipole in the interfacial electric field, which is confirmed by ab initio simulations.  相似文献   

18.
Total vapour pressures have been measured by the isoteniscope method for triethylamine + n-hexane, triethylamine + n-octane, and tributylamine + n-hexane at 298.15 K. The excess Gibbs free energies GE for the liquid phase have been calculated from the measurements; GE is positive for the triethylamine systems and negative for the tributylamine system. The excess enthalpies HE for these three mixtures and for tributylamine + n-octane have been measured at the same temperature. Except for tributylamine + n-hexane, all these HE's are positive.  相似文献   

19.
The temperature dependence of the surface tension was measured by the pendant drop method for four compounds from the homologous series of alkylcyanobiphenyls (nCB), in the nematic liquid crystal and isotropic phases. For 8CB (octylcyanobiphenyl) the temperature dependence was also measured in the smectic range. Not very close to the isotropic transition temperature, and with the exception of 8CB, the surface tension decreases with increase in temperature in the nematic range. A downward jump at the transition temperature was observed for all liquid crystals studied. The shape of the drop in the smectic A phase of 8CB gives indications of stratification in a system of terraces.  相似文献   

20.
A previous study on the physical properties of 1-alkanol + n-alkane has establised a correlation between dielectric permittivity at 1 GHz and excess molar volumes for all binary systems that were studied. In order to determine whether this behaviour is similar at lower frequencies, relative permittivity was measured at 100 kHz. The refractive index was measured to explore the effects at higher frequencies. Mixtures under study are in particular the systems (1-butanol + n-hexane, or n-octane, or n-decane) at the temperature of 298.15 K and atmospheric pressure, over the entire composition range. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号