共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Luigi P. M. Colombo Manfredo Guilizzoni Giorgio M. Sotgia 《Experiments in fluids》2012,53(5):1617-1625
The transition from annular to wavy-stratified oil–water adiabatic flow within horizontal pipes is experimentally analyzed, and a semiempirical model is proposed. The transition is referred to as critical because it occurs suddenly, giving rise to a sharp and strong increase in the pressure drop due to the contact of the high-viscosity oil with the pipe wall. This could lead to a dangerous accident in pipelines. Experimental runs were performed on eight test sections of both Plexiglas® and Pyrex® pipes with internal diameters ranging from 21.5 to 50 mm, using tap water and oil with viscosity about 880 times higher than that of water. On the basis of pressure drop measurement and flow pattern visualization, the transition boundary between annular and wavy-stratified flow was analytically determined and compared with flow pattern maps. 相似文献
3.
Bo Hu 《Nonlinear dynamics》2014,78(4):2685-2698
Complete kinematic is an essential and a challenging work for series–parallel manipulators (S–PMs). This paper studied the complete kinematic of a 2(3-SPS+UP) series–parallel manipulator. First, a S–PM formed by two well-known Tricept parallel manipulators (PMs) connected in serial is presented. Second, the forward and inverse displacements are studied using sylvester dialytic elimination method. Third, the forward and inverse Jacobian matrices are established based on integrating the constraint and coupling information of the single PMs into the S–PM. Fourth, simple and compact formulae for the forward and inverse acceleration are derived using vector approach. Finally, the workspace of this S–PM is constructed using CAD variation geometry approach. The results show that the 2(3-SPS+UP) S-PM has multiple forward and inverse position solutions. The existence and uniqueness of the forward, inverse Jacobian matrices and the acceleration formula are shown from their explicit form. The workspace analysis shows that this S–PM has large workspace. The research works provided a theoretical basis for the novel 2(3-SPS+UP) S–PM, as well as a feasible approach for establishing the complete kinematics for S–PMs. 相似文献
4.
The objective of this study was to measure EWLH in horizontal pipes by a single-wire capacitance probe. The capacitance measured by the probe is linearly proportional to EWLH with a high sensitivity of 1.52 pF/mm. The measurements are independent of water salinity, phase distribution, and wire shape. The static performance of the probe was validated theoretically and experimentally. In dynamic process, the parameters relevant to fluids and wire influence the measuring accuracy of EWLH, but the errors are constant and small. For the given wire and fluids, the accuracy decreases as bubble size decreases or interfacial velocity increases, which is mainly relevant to flow patterns. 相似文献
5.
This work is devoted to the numerical and experimental study of annealing effects on microstructure and mechanical properties of the high-density polyethylene (HDPE). Uniaxiale tension tests are conducted at 25 °C in order to characterize the mechanical behavior of HDPE. The influence of the annealing treatment on the material microstructure is examined by the Fourier transform infrared spectroscopy, and microstructures are characterized using differential scanning calorimetry. The distribution of nonlinear relaxation approach is adopted to describe the mechanical response of virgin and annealed HDPE. Annealing effects are incorporated into the constitutive model by introducing the microstructure (crystallinity degree) evolution on the macroscopic response of the material. The numerical predictions of the model are in good agreement with experimental results for the different states of the material. 相似文献
6.
7.
In this paper, a modified KdV-CBS equation is investigated by using the truncated Painlevé expansion and consistent Riccati expansion method, respectively. It is shown that the modified KdV-CBS equation has a nonlocal symmetry related to the residue of its truncated Painlevé expansion. It is also proved that the modified KdV-CBS equation is consistent Riccati expansion solvable. Furthermore, with the help of the consistent Riccati expansion method, the soliton–cnoidal wave interaction solutions are explicitly given. 相似文献
8.
《Particuology》2016
Multi-doped spinels, namely LiMn2O4 and LiZnxHoyMn2−x−yO4 (x = 0.10–0.18; y = 0.02–0.10), for use as cathode materials for lithium-ion rechargeable batteries were synthesized via sol–gel method, using lauric acid as the chelating agent, to obtain micron-sized particles. The physical properties of the synthesized samples were investigated using differential thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, energy-dispersive X-ray analysis, and electrochemical methods. XRD showed that LiMn2O4 and LiZnxHoyMn2−x−yO4 have high degrees of crystallinity and good phase purities. The SEM images of LiMn2O4 showed an ice-cube morphology with particles of size 1 μm. Charge–discharge studies showed that undoped LiMn2O4 delivered the discharge capacity of 124 mA h/g with coulombic efficiency of 95% during the first cycle, whereas doped spinels delivered discharge capacities of 125, 120, and 127 mA h/g in the first cycle with coulombic efficiencies of 96%, 91%, and 91%, respectively. 相似文献
9.
Zirconia (yttria)–alumina ceramic nanocomposites were fabricated from different powders by spark plasma sintering (SPS). One powder was a commercially available nanocomposite powder TZP-3Y20A, consisting of 3 mol% yttria-stabilized zirconia (3-YSZ) reinforced with 20 wt% alumina, and the other, used as a comparison, was a conventional mechanically mixed powder 3YSZ-20A, a blend made of 3 mol% yttria-stabilized zirconia powder ZrO2 (3Y) and 20 wt% α-alumina powder. The effect of the sintering temperature on the densification, the sintering behavior, the mechanical properties and the microstructure of the composites was investigated. The results showed that the density increased with increasing sintering temperature, and thus, the mechanical properties were strengthened because of the increased densification. The nanocomposite powder TZP-3Y20A was easily sintered, and good mechanical properties were achieved as compared with the powder from the conventional mechanically mixed method, the maximum flexural strength and fracture toughness of which were 967 MPa and 5.27 MPa m1/2, respectively. 相似文献
10.
Nonlinear Dynamics - The dynamics and properties of rogue waves of two classical evolution equations are studied in terms of trajectories of the poles of the exact solutions, by analytically... 相似文献
11.
C. Froustey O. Naimark M. Bannikov V. Oborin 《European Journal of Mechanics - A/Solids》2010,29(6):1008-1014
The objective of this work is to provide the link between the fatigue behaviour of pre-strained aluminium alloys and the scaling properties of damage induced on the fracture surface. Fatigue tests performed on pre-strained aluminium alloys revealed a large difference in their residual fatigue resistance linked to the material: the Al–Cu alloy demonstrated a sharp decrease of HCF life-time due to the pre-straining whereas the insensitivity of the Al–Mg alloy was clear. For the Al–Cu alloy, the investigations made at a ‘mechanical’ scale allow us to associate the strain energy absorbed during the prior loading with the aspect of the surface and the residual HCF life-time. The statistical characterization of the fatigue damaged zone was done from the measurement of the surface roughness. Scaling properties were established that allowed the conclusion of the universality of HCF damage kinetics as the mechanism controlling the sensitivity of Al–Cu alloy whatever the pre-straining history. 相似文献
12.
Somenath Ganguly 《Transport in Porous Media》2010,84(1):201-218
During waterflooding of a fractured formation, water may channel through the fracture or interconnected network of fractures, leaving a large portion of oil bearing rock unswept. One remedial practice is injection of a gelling solution into the fracture. Such placement of a gelling mixture is associated with leak-off from the fracture face into the adjoining matrix. Design of a gel treatment needs understanding of the flow of gelling mixture in and around the fracture. This flow is addressed here for Cr(III)–partially hydrolyzed polyacrylamide formulation through experiments and conceptual model. A fractured slab was used to develop a lab-model, where the flow along the fracture and simultaneous leak-off into the matrix can be controlled. Also, the fracture and matrix properties had to be evaluated individually for a meaningful analysis of the displacement of gelling solution. During this displacement, the gelling fluid leaked off from the fracture into the matrix as a front, resulting in a decreasing velocity (and pressure gradient) along the fracture. With pressure in the fracture held constant with time, the leak-off rate decreased as the viscous front progressed into the matrix. The drop in leak-off rate was rapid during the initial phase of displacement. A simple model, based on the injection of a viscous solution into the dual continua, could explain the displacement of Cr(III)–polyacrylamide gelling mixture through the fractured slab. This study rules out any major complication from the immature gelling fluid, e.g., build-up of cake layer on the fracture face. The model, due to its simplicity may become useful for quick sizing of gel treatment, and any regression-based evaluation of fluid properties in a fracture for other applications. 相似文献
13.
In this paper, we present a novel approach to quantify regular or chaotic dynamics of either smooth or non-smooth dynamical
systems. The introduced method is applied to trace regular and chaotic stick–slip and slip–slip dynamics. Stick–slip and slip–slip
periodic and chaotic trajectories are analyzed (for the investigated parameters, a stick–slip dynamics dominates). Advantages
of the proposed numerical technique are given. 相似文献
14.
15.
16.
In this paper, we consider a (\(2+1\))-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada (gCDGKS) equation, which is a higher-order generalization of the celebrated Kadomtsev–Petviashvili (KP) equation. By considering the Hirota bilinear form of the CDGKS equation, we study a type of exact interaction waves by the way of vector notations. The interaction solutions, which possess extensive applications in the nonlinear system, are composed by lump wave parts and soliton wave parts, respectively. Under certain conditions, this kind of solutions can be transformed into the pure lump waves or the stripe solitons. Moreover, we provide the graphical analysis of such solutions in order to better understand their dynamical behavior. 相似文献
17.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms. 相似文献
18.
19.