首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Abstract  

An electronic structure study of singlet and triplet states of two series of polyacenequinododimethides was performed using the B3LYP method. It was found that the ground state of all examined polyacenequinododimethides is a singlet with significant diradical character. The diradical character of the compounds under investigation was estimated using the unrestricted symmetry-broken and complete active space methods. It was shown that polyacene-2,3-quinododimethides have more pronounced diradical character than polyacene-2,x-quinododimethides. The diradical character of polyacene-2,x-quinododimethides monotonically increases with their increasing molecular size. Within the series of polyacene-2,3-quinododimethides the diradical character is not a monotonic function of the number of hexagons. It was found that pentacene-2,3-quinododimethide has the most pronounced diradical character in this series. It can be predicted on the basis of the singlet–triplet gap values that even higher polyacenequinododimethides will be singlet, but not triplet molecules.  相似文献   

2.
Using the spin-unrestricted hybrid density functional theory method, we have investigated the intermolecular interaction effects on the longitudinal static second hyperpolarizability (γ) of open-shell singlet slipped-stack dimers composed of singlet diradical square planar nickel complexes involving o-semiquinonato type ligands, Ni(o-C(6)H(4)X(2))(2) (where X = O, NH, S, Se, PH). For comparison, we have also examined the γ values of a closed-shell singlet slipped-stack dimer composed of closed-shell monomers Ni[o-C(6)H(4)S(NH(2))](2). It is found that for interplanar distance ranging between 3.0 and 5.0 ? the slipped-stack dimers with intermediate monomer diradical characters exhibit larger γ values per monomer (γ(dimer)/2) than those with large monomer diradical characters or than the closed-shell dimer. These results extend the domain of validity of the relationship found between γ and the diradical character for individual molecules. It also turns out that the ratio R = (γ(dimer)/2)/γ(monomer) increases upon decreasing the interplanar distance and that this increase is larger for intermediate diradical character than for the other cases. These phenomena have been analyzed by considering the γ density distributions of the dimers, demonstrating a significant field-induced third-order charge transfer between the monomers in the case of intermediate diradical character. The present results indicate that open-shell singlet slipped-stack aggregates composed of monomers with intermediate diradical characters constitute another mean for achieving highly efficient and tunable third-order nonlinear optical materials.  相似文献   

3.
The origin of the diradical character dependence of the second hyperpolarizability (gamma) of neutral singlet diradical systems is clarified based on the perturbation formula of gamma using the simplest diradical molecular model with different diradical characters, i.e., H2 under bond dissociation. The enhancement of gamma in the intermediate diradical character region turns out to originate from the increasing magnitude of the transition moment between the first and second excited states and the decrease of that between the ground and first excited states, respectively, with the increase in diradical character. This feature confirms that open-shell singlet conjugated molecules with intermediate diradical characters constitute a new class of third-order nonlinear optical systems, whose gamma values can be controlled by the diradical character in addition to the conjugation length.  相似文献   

4.
The dependence of the second hyperpolarizability (gamma) on the diradical character (y) for singlet diradical systems is investigated using a model compound, the p-quinodimethane (PQM) molecule with different both-end carbon-carbon (C-C) bond lengths, by several ab initio molecular orbital and density functional theory methods. The diradical character based on UHF calculations indicates that at equilibrium geometry PQM is in a singlet ground state and primarily exhibits a quinoid structure, whereas the diradical character increases when increasing both-end C-C bond lengths. At the highest level of approximation, that is, using the UCCSD(T) method with the 6-31G+diffuse p (zeta = 0.0523) basis set, the longitudinal static gamma of PQM presents a maximum value for intermediate diradical character (y approximately 0.5) while the gamma values are larger for intermediate and large diradical character (y approximately 0.5-0.7) than for small diradical character (y < 0.2). This feature suggests that the gamma values of singlet diradical systems in the intermediate and somewhat strong correlation regimes are significantly enhanced as compared to those in the weak correlation regime. These results are substantiated by a complementary study of the variation in gamma upon twisted ethylene.  相似文献   

5.
Peri‐acenes are good model compounds for zigzag graphene nanoribbons, but their synthesis is extremely challenging owing to their intrinsic open‐shell diradical character. Now, the successful synthesis and isolation of a stable peri‐tetracene derivative PT‐2ClPh is reported; four 2,6‐dichlorophenyl groups are attached onto the most reactive sites along the zigzag edges. The structure was confirmed by X‐ray crystallographic analysis and its electronic properties were systematically investigated by both experiments and theoretical calculations. It exhibits an open‐shell singlet ground state with a moderate diradical character (y0=51.5 % by calculation) and a small singlet–triplet gap (ΔES‐T=?2.5 kcal mol?1 by SQUID measurement). It displays global aromatic character, which is different from the smaller‐size bisanthene analogue BA‐CF3 .  相似文献   

6.
The geometrical structures and stability of non-conjugated C5H10 and C3H8N2 singlet and triplet diradical molecules have been investigated at the UCCSD/6-311g** level. The effects of molecular structure, radical position, amount of Hartree Hork (HF) exchange and spin multiplicity on the nonlinear optical (NLO) coefficients have been also investigated. The reliable UCCSD results show that the triplets of all diradical molecules are more stable compared to their singlet analogues. In addition, the α s and β tot values of C5H10 and C3H8N2 triplet diradical mo-lecules have been investigated by the UBHandHLYP, UB3LYP, UBLYP, UHF and UCCSD methods. The investigation shows that the variations in α s and β tot values are closely connected to the amount of HF exchange. The increasing amount of HF exchange results in monotonic decreases in α s and β tot values, while the α s and β totvalues of singlet diradical molecules and the γ s of C5H10 and C3H8N2 singlet and triplet diradical molecules have been studied by the UBHandHLYP method. The results illustrate that the NLO coefficients for our studied non-conjugated carbon and nitrogen diradical species can be tuned by molecular structure, radical position and spin multiplicity, which are very significant for designing NLO materials.  相似文献   

7.
Density functional theory and complete active space self-consistent field computations are applied to elucidate the singlet diradical character of square planar, diamagnetic nickel complexes that contain two bidentate ligands derived from o-catecholates, o-phenylenediamines, o-benzodithiolates, o-aminophenolates, and o-aminothiophenolates. In the density functional framework, the singlet diradical character is discussed within the broken symmetry formalism. The singlet-triplet energy gaps, the energy gained from symmetry breaking, the spin distribution in the lowest triplet state, and the form of the magnetic orbitals are applied as indicators for the singlet diradical character. Moreover, a new index for the diradical character is proposed that is based on symmetry breaking. All symmetry breaking criteria show that the complexes obtained from o-catecholates and o-benzodithiolates have the largest and the smallest singlet diradical character, respectively. The singlet diradical character should be intermediate for the complexes derived from o-phenylenediamines, o-aminophenolates, and o-aminothiophenolates. The diradical character of all complexes suggests the presence of Ni(II) central atoms. This is also indicated by the d-populations computed by means of the natural population analysis.  相似文献   

8.
The static second hyperpolarizability (γ) of a singlet diradical system involving phenalenyl radicals linked with acetylene π-conjugated bridge, BPLE, is investigated as well as reference closed-shell systems, BPRY1 and BPRY2, by the hybrid density functional theory method. The γ value of BPLE with intermediate diradical character is shown to be about four times as large as that of BPRY1 with similar π-conjugation length and to be about twice as large as that of BPRY2 with longer π-conjugation length. This feature is in agreement with our prediction that the molecules with intermediate diradical characters enhance γ values compared to the closed-shell molecules.  相似文献   

9.
This contribution reveals the effects of a static electric field on the static second hyperpolarizability γ of symmetric singlet diradical molecules using the valence configuration interaction scheme. It is found that under the effect of a field, the component of γ along the axis joining the two radical sites can be gigantically (approximately two to three orders) enhanced for symmetric diradicals having intermediate diradical characters with respect to those of closed-shell and pure diradical molecules in the absence of a field. Moreover, this electric field enhancement of γ increases as a function of the diradical character. These results and their analysis propose therefore a new strategy to design materials with exceptional nonlinear optical responses.  相似文献   

10.
A series of bis[N,N‐di‐(4‐methoxylphenyl)amino]arene dications 1 2+– 3 2+ have been synthesized and characterized. Their electronic structures were investigated by various experiments assisted by theoretical calculations. It was found that they are singlets in the ground state and that their diradical character is dependent on the bridging moiety. 3 2+ has a smaller singlet–triplet energy gap and its excited triplet state is thermally readily accessible. The work provides a nitrogen analogue of Thiele’s hydrocarbon with considerable diradical character.  相似文献   

11.
12.
We have investigated the static second hyperpolarizabilities (gamma) of the singlet diradical systems with intermediate diradical character involving phenalenyl radicals connected by acetylene and vinylene pi-conjugated linkers, 1 and 2, using the hybrid density functional theory. For comparison, we have also examined the gamma values of the closed-shell and pure diradical systems with almost the same molecular size as 1 and 2. In agreement with our previous prediction of the diradical character dependence of gamma, it turns out that the gamma values of 1 and 2 are significantly enhanced compared to those of the closed-shell and pure diradical systems. In the present case, distinct differences in gamma values are not observed between the two pi-conjugated linkers, though the diradical character is found to depend on the kind of linker. Furthermore, we have investigated the spin multiplicity effect on gamma. Changing from the singlet to the triplet state, the gamma values of the systems with intermediate diradical character in the singlet state are quite reduced, though those of the pure diradical systems are hardly changed. Such spin multiplicity dependence of gamma is understood by considering the difference of diradical character between their singlet states together with the Pauli principle. The present results provide a possibility of a novel control scheme of gamma for phenalenyl radical systems involving pi-conjugated linkers by adjusting the diradical character through the change of the linked position of pi-conjugated linkers and the spin multiplicity.  相似文献   

13.
Helicenes and extended helical π-conjugated compounds have been widely studied, but most of the systems contain only aromatic benzene or heterocyclic rings, showing local aromatic character. Herein, new S-shaped double [6]helicene 1 , which has two embedded para-quinodimethane (p-QDM) units, is reported. Due to the existence of a proaromatic quinoidal substructure, it has open-shell diradical character. Its model compound, C-shaped single [6]helicene 2 containing one p-QDM unit, was also synthesized and compared. Their ground-state structures and electronic properties were systematically studied by a combination of various experimental methods assisted by theoretical calculations. Compound 1 has a double-helical structure in the crystal, with the two terminal [6]helicene units bent in opposite directions (i.e., anti form). However, an anti/syn isomerization process with a moderate interconversion energy barrier was observed on the NMR timescale. Compound 1 shows amphoteric redox behavior. It also exhibits open-shell diradical character (y0=12.1 %) and a small singlet–triplet gap. On the other hand, compound 2 has a typical closed-shell nature. The dication and dianion of 1 also show open-shell diradical character. The dianion of 2 and the tetraanion of 1 exhibit similar electronic structures to their respective isoelectronic structures, that is, [6]helicene and a double [6]helicene. This work provides some insights into the design and synthesis of stable helical π systems with open-shell diradical character and magnetic activity.  相似文献   

14.
《化学:亚洲杂志》2017,12(17):2177-2182
We theoretically predicted that acetylene‐bridged benzo[1,2‐c ;4,5‐c ′]bis[1,2,5]thiadiazole (BBT) oligomers would show a quick increase of diradical character with the extension of chain length. To validate the hypothesis, six stable BBT‐based diradicaloids were synthesized and fully characterized by X‐ray crystallographic analysis and various spectroscopic measurements. Three of them showed prominent paramagnetic activity at elevated temperatures due to thermal population from the open‐shell singlet ground state to triplet excited state. It was also found that substitution by electron‐donating triphenylamine groups at the termini promoted the diradical character and reduced the singlet–triplet energy gap, and at the same time, resulted in intense near‐infrared absorption.  相似文献   

15.
To create a design guideline for efficient third‐order nonlinear optical (NLO) molecules, the chain‐length (n) dependences of the diradical character y and the longitudinal second hyperpolarizability γ of quinoidal oligothiophenes (QTs), from monomers to octamers, involving thiophene‐S,S‐dioxide rings are investigated by using the density functional theory method. It turns out that the diradical character of the modified QTs is reduced as compared to those of the pristine QTs. By introducing an appropriate number of oxidized rings into the QT framework, intermediate y values can be achieved even in the systems with large values of n, in which the pristine QTs are predicted to have pure diradical character. Such intermediate diradical oligomers are shown to exhibit enhanced γ values as compared to the pristine QTs with the same value for n. From the calculation results, the introduction of the optimal number of thiophene‐S,S‐dioxide rings is predicted to be an efficient chemical modification for optimizing the third‐order NLO properties of open‐shell QTs through tuning the diradical characters.  相似文献   

16.
Numerous studies have underlined the putative diradical character of π‐conjugated molecules that can be described by closed‐shell Lewis structures, for instance, p‐dimethylene p–n phenylenes, or long polyacenes. In the latter compounds, the only way to save the aromaticity of the six‐membered rings is to give up the Lewis electron pairing in the singlet biradical ground state. The present work considers the possibility of doing the same by using the basic C2 units of carbo‐meric architectures. A series of acyclic and cyclic carbo‐meric architectures is studied by using UB3LYP DFT broken‐symmetry calculations, including spin decontaminations and subsequent geometry optimization of the singlet diradical. The C2 units are shown to stabilize the singlet biradical by spin delocalization, two of them playing approximately the same role as one radical‐insulating 1,4 phenylene moiety. The results are generalized to the investigation of open‐shell polyradical singlet states of rigid hydrocarbon structures, the symmetry and rigidity of which can assist cooperativity and self spin polarization effect. Several synthesis targets with challenging magnetic/spin properties are suggested in the carbo‐mer series.  相似文献   

17.
18.
Using long-range corrected density functional theory, the relationships between the electronic, magnetic, and nonlinear optical properties are drawn for two families of organic compounds, the dicyclopenta-fused acenes (DPAs) and the polyacenes (PAs), containing up to N = 12 fused rings. First, the longitudinal second hyperpolarizability (γ) of singlet DPAs is significantly enhanced with increasing system size, in comparison to PAs. This behavior is associated with an increase in the longitudinal spin polarization between the terminal five-membered rings of DPAs and is consistent with previous studies where γ is maximized for intermediate diradical character. The size dependence of the diradical character is also found to cause a hump in the γ/N evolution for singlet DPAs around N = 8. In fact, in the case of singlet PAs, the diradical characters y(0) and y(1), the various magnetic properties and the γ/N values vary monotonically with N, whereas for singlet DPAs, the shielding, the magnetizability, and the γ/N values exhibit extrema near N = 8 due to the appearance of transversal spin polarization in the middle six-membered rings in addition to the longitudinal spin polarization between the terminal five-membered rings. Moreover, it is shown that for singlet DPAs the longitudinal spin polarization (characterized by y(0)) is associated with the antiaromaticity (N ≤ 3) and the slight- or non-aromaticity (N ≥ 4) of the terminal five-membered rings, whereas the appearance of transversal spin-polarization (characterized by y(1)) is associated with the decrease in the aromaticity in the inner six-membered rings as shown for large PAs. Therefore, the exceptional behaviors in singlet DPAs for small N (N < 9) are caused by the increase in diradical character y(0) correlated with the anti-aromaticity or the slight-/non-aromaticity of terminal rings and the corresponding emergence of a global aromatic character. Such a relationship between the aromaticity/antiaromaticity and the diradical character is useful for designing real open-shell NLO molecules through the control of their diradical characters.  相似文献   

19.
By using weakly coordinating anions we succeeded in the stabilization and isolation of two Würster's blue-based diradicaloid dications with saturated spacers. Their geometries and electronic structures were investigated by various experiments in conjunction with DFT calculations. Both one-dimensional alkylate-bridged dications show considerable diradical character with spacer-dependent singlet-triplet energy gaps. One of them displays a much enhanced diradical character and could basically be viewed as a pure diradical with degeneracy of singlet and triplet states.  相似文献   

20.
The electronic structures and molecular properties of S2N2 as well as the currently unknown chalcogen nitrides Se2N2 and SeSN2 have been studied using various ab initio and density functional methods. All molecules share a qualitatively similar electronic structure and can be primarily described as 2pi-electron aromatics having minor singlet diradical character of 6-8% that can be attributed solely to the nitrogen atoms. This diradical character is manifested in the prediction of their molecular properties, in which coupled cluster and multiconfigurational approaches, as well as density functional methods, show the best performance. The conventional ab initio methods RHF and MP2 completely fail to describe these systems. Predictions for the vibrational frequencies, IR intensities, Raman activities, and 14N, 15N, and 77Se chemical shifts, as well as singlet excitation energies of Se2N2 and SeSN2, have been made. The computed high-level spectroscopic data will be of considerable value in future efforts aimed at the preparation of the conducting polymers (SeN)x and (SeNSN)x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号