首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
Mn-doped ZnO single-crystal micronuts were synthesized via hydrothermal method in an hexamethylenetetramine aqueous solution. These micronuts are of wurtzite crystal structure. The effects of Mn doping amount and precursor concentration on the structural, optical properties and photocatalytic activity have been investigated. The synthesized Mn-doped ZnO was characterized by X-ray powder diffraction, field emission scanning electron microscopy (FESEM), UV–Vis absorption and photoluminescence spectroscopy. The structural analyses based on X-ray diffraction revealed the absence of Mn-related secondary phases. According to FESEM results, the length of ZnO micronuts was in the range of 5–8 μm. The band gap energy increased on increasing Mn doping concentration. The photocatalytic activity was studied by degradation of methyl orange aqueous solution, which showed that the Mn-doped ZnO micronuts prepared in precursor concentration of 0.1 M and 4% Mn doping had the highest photocatalytic activity. The effects of crystal defect and band gap energy on photocatalytic activity of Mn-doped ZnO samples were studied in different precursors and Mn doping amounts.  相似文献   

2.
We report the synthesis and characterization of several sizes of Mn-doped ZnO nanocrystals, both in the free-standing and the capped particle forms. The sizes of these nanocrystals could be controlled by capping them with polyvinylpyrollidone under different synthesis conditions and were estimated by X-ray diffraction and transmission electron microscopy. The absorption properties of PVP-capped Mn-doped ZnO exhibit an interesting variation of the band gap with the concentration of Mn. Fluorescence emission, electron paramagnetic resonance, and X-ray absorption spectroscopy provide evidence for the presence of Mn in the interior as well as on the surface of the nanocrystals.  相似文献   

3.
We investigated the structural, optical and magnetic properties of Mn-doped zinc oxysulfide films. Zn(O,S) films were deposited by a spray pyrolysis method on glass substrate. A thin Mn layer evaporated on these films served as the source for the diffusion doping. The XRD pattern of undoped films revealed the presence of two wurtzite phases corresponding to ZnS and ZnO with a strong preferred orientation along the ZnS (0 0 2) hexagonal plane direction. SEM showed a similar surface morphology for the undoped and Mn-doped films, displaying regular arrays of hexagonal micro-rods perpendicular to the substrate. The optical transmission measurements showed that both undoped and Mn diffusion-doped films had a low average transmittance less than about 10%. The gap energy is decreased from 3.42 to 3.33 eV upon annealing at 400 °C. Photoluminescence studies at 300 K show that the incorporation of manganese leads to a decrease of deep level band intensity compared to undoped sample. Clear ferromagnetic loops were observed for the Mn-doped Zn(O,S) films, which might be due to the presence of point defects.  相似文献   

4.
采用喷雾辅助气相沉积法在水热法合成的ZnO纳米线上沉积CdS纳米颗粒。采用X射线衍射仪(XRD)、激光拉曼仪(Raman)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱分析谱(XPS)和紫外可见漫反射光谱等测试手段对复合光催化剂进行表征。结果表明,3~10 nm的CdS纳米粒子修饰在直径约为100 nm ZnO纳米线的表面。XPS和Raman表明复合材料中ZnO和CdS之间存在化学相互作用。可见光催化降解罗丹明B实验结果表明ZnO/CdS复合材料的催化性能优于单相CdS或ZnO,沉积时间为30 s合成的ZnO/CdS速率常数分别是CdS和ZnO的2.91和4.03倍,且具有较高的稳定性。ZnO/CdS复合材料光催化性能增强的可能原因为光吸收范围的拓展和光生载流子分离效率的提高。  相似文献   

5.
Porous ZnO nanorods that displayed excellent photocatalytic degradation of organic pollutants (RhB and phenol) were prepared via a solvent thermal method followed by surface modification with carbon dots (C-dots) using a deposition method. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The degradation of the organic pollutants using the nanorods was tested under Xe-light illumination and was enhanced following C-dot modification. Nanorods that were modified by the C-dots at a mass fraction of 1.2% (CZn1.2) exhibited the highest photocatalytic activity for the degradation of RhB, which was 2.5 times of the pure porous ZnO nanorods. Additionally, the modified nanorods with strangely oxidation ability could catalyze the degradation of phenol by open-rings reaction under Xe-light illumination. The improved photocatalytic activity was attributed to the effective separation of the photogenerated electrons and holes, in which the C-dots served as the receptor of the photogenerated electrons.  相似文献   

6.
通过两步法合成铜掺杂的氧化锌纳米棒,通过X射线衍射(XRD)、扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见(UV-Vis)分光光谱等技术对系列样品进行了表征,研究并探索了铜掺杂的氧化锌纳米棒光降解染料罗丹明B(RhB)和气体乙醛的催化活性。通过对多孔Cu掺杂ZnO纳米棒光催化分解乙醛进行了评价。多孔Cu掺杂ZnO纳米棒(CZ-5)光催化剂具有最高的催化分解乙醛的能力,比其它多孔Cu掺杂ZnO纳米棒具有很高的催化活性。多孔Cu掺杂ZnO纳米棒光催化剂在室温下在可见光(435 nm)下照射16 h,5.50×10-4φ,体积分数)的乙醛气体完全降解为二氧化碳(CO2)。多孔铜掺杂的氧化锌纳米棒光催化剂的光催化性能的改善主要归因于铜和氧化锌纳米棒之间的协同作用。这种改进的光催化协同作用归因于Cu掺杂ZnO的可见光吸收的延伸和光生电子空穴对的抗重组。  相似文献   

7.
BiFeO3 perovskite with 2D laminated cylinder-like structure was prepared via a facile one-pot hydrothermal method, whose morphologies and optical properties was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectrum (EDS), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic properties of the as-prepared BiFeO3 composites were evaluated according to degrading Rhodamine B (RhB) and desulfurization under visible light irradiation, with excellent photocatalytic degradation and desulfurization activity found. Moreover, the mechanism study of active free radicals in photocatalytic activity indicates that the h+ radical in holes was mainly responsible for synergistic catalytic efficacy in photocatalytic degradation.  相似文献   

8.
以Bi(NO3)3·5H2O、Zn(CH3COO)2·2H2O和NaBr为前驱体,采用简单溶剂热法制备BiOBr/ZnO三维花状微纳米复合材料。采用X射线衍射、扫描电子显微镜、X射线光子能谱、N2吸附-脱附、光致发光和电子顺磁共振等分析技术对其理化性质进行了表征。通过可见光催化降解罗丹明B(RhB)的实验测试了复合材料的光催化性能。结果表明ZnO含量为5%的BiOBr/ZnO光催化活性最优,RhB降解率在50 min后达到98.3%,其降解速率常数是纯ZnO和BiOBr的6.3倍和3.4倍,并且具有较高的稳定性。复合材料光催化性能增强的可能原因为ZnO的引入增强了可见光的吸收和光生载流子的电荷分离效率。  相似文献   

9.
利用超声和水热的协同控制作用高效合成出了分散好、晶体结构完整、粒径尺寸约为20 nm的掺铝氧化锌(ZAO)纳米晶, 通过透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、傅里叶变换红外(FTIR)光谱仪、紫外-可见(UV-Vis)分光光度计和热重-差热分析(TG-DTA)手段对产物形貌、结构、光学性质及前驱物的热性质进行了研究, 对其降解罗丹明B (RhB)的光催化效果和光催化降解机理进行了探讨. 由于超声和水热的协同作用, 有效控制了产物的粒径, 提高了产物的结晶度. 产物的紫外-可见光谱吸收峰出现在369 nm左右, 计算其带隙约为3.36 eV. 同超声法或水热法制备的产物相比, 超声-水热法制备的ZAO纳米产物具有更高的光催化活性, 从而使光催化降解时间缩短为原来的77.8%. ZAO纳米光催化剂能够回收再利用.  相似文献   

10.
Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron–hole stability. The crystalline nanocomposite was stable when the material was used several times.  相似文献   

11.
用复合电沉积技术制备了Ag@AgBr/CNT/Ni表面等离子体薄膜催化剂,以扫描电镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman Spectra)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶体结构、化学组成和光谱特性进行了表征,在可见光照射下,用罗丹明B(RhB)作为模拟污染物对薄膜的光催化性质和稳定性进行测定,采用测定薄膜电化学阻抗谱(EIS)和向反应系统中加入活性物种捕获剂的方法对薄膜光催化机制进行探索。结果表明:最优工艺下制备的Ag@AgBr/CNT/Ni薄膜是由少量碳纳米管(CNT)和表面沉积纳米Ag粒子的AgBr晶体构成的复合薄膜。薄膜具有突出的表面等离子体共振效应、优异的光催化活性和良好的催化稳定性。光催化罗丹明B 20 min,Ag@AgBr/CNT/Ni薄膜的降解率是Ag@AgBr/Ni薄膜的1.32倍,是P25 TiO2/ITO多孔薄膜的21.6倍。在保持光催化性能基本不变的前提下可循环使用5次。CNT的存在使薄膜电荷传导性能和光催化还原溶解氧的性能大幅增加,是所制薄膜相对于Ag@AgBr/Ni薄膜光催化性能提高的主要原因。提出了薄膜光催化罗丹明B的反应机理。  相似文献   

12.
ZnO nanoparticles were modified with KF using thermal shock method at various temperatures in order to improve the photocatalytic activity of ZnO under both UVA and visible light irradiation. The influences of KF-modification on the crystal structure, morphology, UV–visible absorption, specific surface area as well as surface structure of ZnO were respectively characterized by XRD, FE-SEM, UV–Visible diffuse reflectance, N2 adsorption and XPS spectroscopy. The photocatalytic activity was evaluated via the degradation of methylene blue under UVA irradiation. According to the results, the thermal shock process with KF did not modify the structure, the particle size and the optical properties of ZnO nanoparticles but successfully increase their UVA and visible light induced photocatalytic activity. This enhancement of activity may be attributed to the increase of surface hydroxyl groups and zinc vacancies of modified ZnO samples.  相似文献   

13.
用复合电沉积技术制备了Ag@AgBr/CNT/Ni表面等离子体薄膜催化剂,以扫描电镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman Spectra)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶体结构、化学组成和光谱特性进行了表征,在可见光照射下,用罗丹明B(RhB)作为模拟污染物对薄膜的光催化性质和稳定性进行测定,采用测定薄膜电化学阻抗谱(EIS)和向反应系统中加入活性物种捕获剂的方法对薄膜光催化机制进行探索。结果表明:最优工艺下制备的Ag@AgBr/CNT/Ni薄膜是由少量碳纳米管(CNT)和表面沉积纳米Ag粒子的AgBr晶体构成的复合薄膜。薄膜具有突出的表面等离子体共振效应、优异的光催化活性和良好的催化稳定性。光催化罗丹明B 20 min,Ag@AgBr/CNT/Ni薄膜的降解率是Ag@AgBr/Ni薄膜的1.32倍,是P25 TiO_2/ITO多孔薄膜的21.6倍。在保持光催化性能基本不变的前提下可循环使用5次。CNT的存在使薄膜电荷传导性能和光催化还原溶解氧的性能大幅增加,是所制薄膜相对于Ag@AgBr/Ni薄膜光催化性能提高的主要原因。提出了薄膜光催化罗丹明B的反应机理。  相似文献   

14.
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO–rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO–rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO–rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO–rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2-saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core–shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.  相似文献   

15.
We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2) was found to strongly inhibit oxidation of Mn(2+) by O(2), allowing the synthesis of Mn(2+):ZnO to be performed aerobically. Mn(2+) ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn(2+):ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn(2+) with very homogeneous speciation, differing from bulk Mn(2+):ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 micro(B)/Mn(2+) and T(C) > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn(2+):ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.  相似文献   

16.
采用简便的两步溶液相化学方法,在较低温度下(80℃),制备出了花状的ZnO/ZnS异质结构。分别利用X射线衍射、X射线光电子能谱仪、扫描电子显微镜、透射电子显微镜、紫外-可见光谱仪等测试手段对所制备的样品进行表征,结果表明ZnO/ZnS异质结构是由花状ZnO纳米结构和ZnS纳米粒子组成。在光降解罗丹明B(RhB)的测试中,ZnO/ZnS异质结构样品体现出了比ZnO前驱物和商业P25光催化剂更高的光催化效率,这主要可归因于异质结构更有利于电子-空穴的有效分离。ZnO/ZnS光催化剂体现出良好的循环稳定性。  相似文献   

17.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

18.
Nanocrystals of undoped and nickel-doped zinc oxide (Zn1?x Ni x O, where x?=?0.00?C0.05) were synthesized by the coprecipitation method. Crystalline size, morphology, and optical absorption of prepared samples were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and UV?Cvisible spectrometer. XRD and SEM studies revealed that Ni-doped ZnO crystallized in hexagonal wurtzite structure. Doping of ZnO with Ni2+ was intended to enhance the surface defects of ZnO. The incorporation of Ni2+ in place of Zn2+ provoked an increase in the size of nanocrystals as compared to undoped ZnO. Crystalline size of nanocrystals varied from 10 to 40?nm as the calcination temperature increased. Enhancement in the optical absorption of Ni-doped ZnO indicated that it can be used as an efficient photocatalyst under visible light irradiation. Optical absorption measurements indicated a red shift in the absorption band edge upon Ni doping. The band gap value of prepared undoped and Ni-doped ZnO nanoparticles decreased as annealing temperature was increased up to 800?°C.  相似文献   

19.
The toxic dye pigments, even in small quantities, can damage ecosystems. Removing organic, inorganic, and microbiological contaminants from wastewater via heterogeneous photocatalysis is a promising method. Herein, we report the band structure tuning of ZnO/CuO nanocomposites to enhance photocatalytic activity. The nanocomposites were synthesized by a chemical approach using step-wise implantation of p-type semiconductor CuO to n-type semiconductor ZnO. Various characterization techniques such as X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX) and UV spectroscopy were used to investigate the crystal structure, surface morphology, elemental composition and optical properties of the synthesized samples. As the CuO content increased from 10% to 50% in ZnO/CuO nanocomposites, the optical bandgap decreased from 3.36 to 2.14 eV. The photocatalytic activity of the samples was evaluated against the degradation of methylene blue (MB) under visible irradiation. Our study demonstrates a novel p–n junction oxide photocatalyst based on wt. 10% CuO/ZnO with superior photocatalytic activity. Effectively 66.6% increase in degradation rate was achieved for wt. 10% CuO/ZnO nanocomposite compared to pure ZnO nanoparticles.  相似文献   

20.
制备方法对AgInO2结构及光催化性能的影响   总被引:1,自引:0,他引:1  
以离子交换法和"氟化异丙烯膜袋"水热法分别制备了AgInO2,利用XRD、低温氮吸附-脱附、SEM、紫外-可见漫反射光谱(UV-Vis diffuse reflection spectroscopy,DRS)和XPS对不同方法所得到的AgInO2进行了表征;以罗丹明B(RhB)和甲基橙(MO)为目标物,在可见光下考察了2种催化剂的光催化性能。结果表明,利用"氟化异丙烯膜袋"水热法制备的样品由于具有更好的结晶度,且在可见光区有更强的吸收,从而表现出了更好的可见光光催化活性(3 h降解RhB达94%。7 h降解MO达83%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号