首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalyst precursors containing 1% Au were synthesized by the impregnation of Al2O3 and CeO2-Al2O3 supports with an aqueous solution of HAuCl4 followed by drying, treatment with aqueous ammonia for the removal of chlorine residues, and final drying at 90°C. The oxidation of CO in gas containing ~1 vol % O2, ~1 vol % CO, 60 vol % H2, and the balance N2 on the activated catalysts was studied. In a number of experiments, to 18 vol % water was added to the gas mixture. The activation of precursors by the initial gas was studied. It was found that the prolonged storage of a precursor in air made its activation difficult to perform. The 1%Au/Al2O3 catalyst activated by the gas mixture stably operated in the preferential oxidation of CO at room temperature with the occurrence of the reaction in the mode of catalyst surface ignition (a hot spot at the bed inlet) under a change in the feed gas flow rate by a factor of 3. The effect of the presence of additional CO2 (to 39 vol %) on the oxidation of H2 was studied: the catalyst activity decreased. Because the reaction of CO2 reduction to CO did not occur, the effect can be due to the adsorption of CO2 on gold. The effect of the addition of water vapor to the feed gas was studied with the use of 1%Au/CeO2-Al2O3 as an example. The exo/endo effects related to the adsorption/desorption of water on the catalyst surface were detected upon steam supply and shutoff at a bed temperature of 100–150°C. It was noted that the addition of water vapor to a certain level favorably affected the selectivity (decreased the residual concentration of CO). The boundary water concentration, at which the effect became negative, depended on catalyst bed temperature. The higher was the bed temperature, the greater amount of water could be added until the manifestation of a negative effect.  相似文献   

2.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

3.
Summary. The thermal and photoassisted catalytic oxidation of CO at metal oxide supported RuO2·xH2O was studied at room temperature. Contrary to neat RuO2·xH2O the supported catalysts suffer from fast deactivation attributed to strong adsorption of the reaction product carbon dioxide. The latter can be efficiently removed from the catalyst surface at elevated temperatures. In some cases, i.e. for catalysts supported with selected n-type semiconductors (TiO2, SnO2, WO3), efficient CO2 desorption and good, constant catalytic activity was observed upon visible light irradiation. Under such conditions the CO to CO2 conversion observed for RuO2·xH2O/TiO2 was nearly as good and stable as for the unsupported catalyst. It is suggested that light absorption promotes carbon dioxide desorption through positive charging of the catalyst surface.  相似文献   

4.
CO poisoning of Pt group metal (PGM) catalysts is a chronic problem for hydrogen oxidation reaction (HOR), the anodic reaction of hydroxide exchange membrane fuel cell (HEMFC) for converting H2 to electric energy in sustainable manner. We demonstrate here an ultrathin Ru-based nanoflower modified with Pb (PbRuCu NF) as an active, stable, and CO-resistant catalyst for alkaline HOR. Mechanism studies show that the presence of Pb can weaken the adsorption of *H, strengthen *OH adsorption to facilitate CO oxidation, as a result of significantly enhanced HOR activity and improved CO tolerance. Furthermore, in situ electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) suggests that Pb acts as oxygen-rich site to regulate the behavior of the linear CO adsorption. The optimized Pb1.04-Ru92Cu8/C displays a mass activity and specific activity of 1.10 A mgRu−1 and 5.55 mA cm−2, which are ≈10 and ≈31 times higher than those of commercial Pt/C. This work provides a facile strategy for the design of Ru-based catalyst with high activity and strong CO-resistance for alkaline HOR, which may promote the fundamental researches on the rational design of functional catalysts.  相似文献   

5.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

6.
CO and formaldehyde (HCHO) oxidation reactions were investigated over mesoporous Ag/Co3O4 catalysts prepared by one-pot (OP) and impregnation (IM) methods. It was found that the one-pot method was superior to the impregnation method for synthesizing Ag/Co3O4 catalysts with high activity for both reactions. It was also found that the catalytic behavior of mesoporous Co3O4 and Ag/Co3O4 catalysts for the both reactions was different. And the addition of silver on mesoporous Co3O4 did not always enhance the catalytic activity of final catalyst for CO oxidation at room temperature (20 °C), but could significantly improve the catalytic activity of final catalyst for HCHO oxidation at low temperature (90 °C). The high surface area, uniform pore structure and the pretty good dispersion degree of the silver particle should be responsible for the excellent low-temperature CO oxidation activity. However, for HCHO oxidation, the addition of silver played an important role in the activity enhancement. And the silver particle size and the reducibility of Co3O4 should be indispensable for the high activity of HCHO oxidation at low temperature.  相似文献   

7.
The kinetics for the oxidation of carbon monoxide in the presence of excess oxygen over Pt-Rh alloy catalysts were studied by using the reversed-flow gas chromatography technique. Suitable mathematical analysis equations were derived by means of which the rate constants for the oxidation reaction of carbon monoxide, as well as for the adsorption and desorption of the reactant CO on the catalysts pure Pt, 75 atom% Pt+25 atom% Rh, 50 atom% Pt+50 atom% Rh, 25 atom% Pt+75 atom% Rh and pure Rh supported on SiO2 were determined. All the catalysts show a maximum rate constant for the production of CO2 at a characteristic temperature close to that found in the literature. The rate constants for the adsorption of CO increase generally with increasing temperature, while those for the desorption decrease with increasing temperature. From the variation of the rate constants with temperature activation energies for the oxidation reaction and adsorption of CO were determined, which are sensitive to the composition of the catalytic surface. The appearance of CO2 and carbon, when introducing pure CO into the column with the catalysts, verified a partial dissociative adsorption (e.g., disproportionation) of CO on the catalysts used. The latter indicates a mechanism for the CO oxidation through a partial dissociative adsorption of CO followed by the reaction of adsorbed CO molecules with adsorbed O atoms.  相似文献   

8.
The oxidation of CO on planar Au/TiO2 model catalysts was investigated under pressure and temperature conditions similar to those for experiments with more realistic Au/TiO2 powder catalysts. The effects of a change of temperature, pressure, and gold coverage on the CO oxidation activity were studied. Additionally, the reasons for the deactivation of the catalysts were examined in long-term experiments. From kinetic measurements, the activation energy and the reaction order for the CO oxidation reaction were derived and a close correspondence with results of powder catalysts was found, although the overall turnover frequency (TOF) measured in our experiments was around one order of magnitude lower compared to results of powder catalysts under similar conditions. Furthermore, long-term experiments at 80 °C showed a decrease of the activity of the model catalysts after some hours. Simultaneous in-situ IR experiments revealed a decrease of the signal intensity of the CO vibration band, while the tendency for the build-up of side products (e. g. carbonates, carboxylates) of the CO oxidation reaction on the surface of the planar model catalysts was rather low.  相似文献   

9.
(Mn1 ? x M x )O2 (M = Co, Pd) materials synthesized under hydrothermal conditions and dried at 80°C have been characterized by X-ray diffraction, diffuse reflectance spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, and adsorption and have been tested in CO oxidation under CO + O2 TPR conditions and under isothermal conditions at room temperature in the absence and presence of water vapor. The synthesized materials have the tunnel structure of cryptomelane irrespective of the promoter nature and content. Their specific surface area is 110–120 m2/g. MnO2 is morphologically uniform, and the introduction of cobalt or palladium into this oxide disrupts its uniformity and causes the formation of more or less crystallized aggregates varying in size. The (Mn,Pd)O2 composition contains Pd metal, which is in contact with the MnO2-based oxide phase. The average size of the palladium particles is no larger than 12 nm. The initial activity of the materials in CO oxidation, which was estimated in terms of the 10% CO conversion temperature, increases in the following order: MnO2 (100°C) < (Mn,Co)O2 (98°C) < (Mn,Co,Pd)O2 (23°C) < (Mn,Pd)O2 (?12°C). The high activity of (Mn,Pd)O2 is due to its surface containing palladium in two states, namely, oxidized palladium (interaction phase) palladium metal (clusters). The latter are mainly dispersed in the MnO2 matrix. This catalyst is effective in CO oxidation even at room temperature when there is no water vapor in the reaction mixture, but it is inactive in the presence of water vapor. Water vapor causes partial reduction of Mn4+ ions and an increase in the proportion of palladium metal clusters.  相似文献   

10.
A number of platinum-based catalysts bonded on carbon fiber karbopon were prepared using alcohol solutions of H2PtCl6. The catalytic activity of the samples was determined in the low-temperature oxidation of carbon monoxide by oxygen. The effect of the solvent nature of the precursor on the activity of the catalysts was determined. The best results were obtained in the presence of 1.5% Pt/karbopon catalyst prepared using isobutyl alcohol; 100% CO conversion was achieved in respiratory treatment (12000 h?1, room temperature).  相似文献   

11.
The catalytic activity of perovskites MIMIIO3 (MI=La; MII=Co, Mn, Cr, Al, Ni, and V) and MICoO3 (M=Y, Nd, Sm, and Er) in the oxidation of CO, propylene, and ethylbenzene was investigated. The highest activity was observed for the MICoO3 catalysts with perfect perovskite structure. The nature of the rare-earth element has no influence on the catalytic activity. Deformation of the octahedral coordination of the metal was found for the less active catalysts. The interaction of gases (CO, CO+air) with the catalyst surface was investigated. The more active catalysts adsorb a greater amount of O2, and the adsorption occurs in the temperature region of the oxidation reaction. The activities of the perovskite- and spinel-type catalysts were compared under similar conditions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 698–701, April, 1999.  相似文献   

12.
The kinetics of CO methanation in excess H2 on CaO- and CeO2-doped nickel catalysts supported on Al2O3 and TiO2 was studied at atmospheric pressure in a temperature range of 180–240°C. It was found that the same rational fractional rate equation corresponding to the reaction taking place at high surface coverages, is valid for all of the catalysts. The activity of nickel catalysts in the methanation reaction and their adsorption capacity with respect to reaction mixture components depend on the nature of the support and dopants.  相似文献   

13.
The oxidation of CO in the presence of hydrogen (PROX process) was investigated on bimetallic Au-Rh catalysts at 300–373 K by Fourier transform infrared spectroscopy and mass spectroscopy. The effects of catalyst composition, reaction temperature and composition of the reacting gas mixtures have been studied. The IR studies revealed the formation of bi- and monodentate carbonates, bicarbonates and hydrocarbonates on the catalysts surfaces; these surface species proved to be not involved in the surface reactions. The formation of adsorbed formaldehyde was observed on all surfaces, except 1% (0.25Au+0.75Rh)/TiO2. Adsorbed CO2 (as the surface product of CO oxidation) was not detected on any surface. The presence of both O2 and H2 reduced the surface concentration of CO adsorbed on the metallic sites. Mass spectroscopic analysis of the gas phase showed that gaseous CO2 was formed in the highest amount in the CO+O2 mixture, the presence of H2 suppressed the amount of CO2 produced. This negative effect of H2 was the lowest on the 1% Rh/TiO2 and 1% (0.25Au+0.75Rh)/TiO2 catalysts.  相似文献   

14.
In order to improve the CO catalytic oxidation performance of a Pt/TiO2 catalyst, a series of Pt/TiO2 catalysts were prepared via an impregnation method in this study, and various characterization methods were used to explore the effect of TiO2 calcination pretreatment on the CO catalytic oxidation performance of the catalysts. The results revealed that Pt/TiO2 (700 °C) prepared by TiO2 after calcination pretreatment at 700 °C exhibits a superior CO oxidation activity at low temperatures. After calcination pretreatment, the catalyst exhibited a suitable specific surface area and pore structure, which is beneficial to the diffusion of reactants and reaction products. At the same time, the proportion of adsorbed oxygen on the catalyst surface was increased, which promoted the oxidation of CO. After calcination pretreatment, the adsorption capacity of the catalyst for CO and CO2 decreased, which was beneficial for the simultaneous inhibition of the CO self-poisoning of Pt sites. In addition, the Pt species exhibited a higher degree of dispersion and a smaller particle size, thereby increasing the CO oxidation activity of the Pt/TiO2 (700 °C) catalyst.  相似文献   

15.
Selective oxidation of CO that is in mixtures enriched in H2 was studied to investigate catalytic properties of the 0.5—80% CuO/Ce0.7Zr0.3O2 system. The catalysts were prepared by the combined decomposition of copper, cerium, and zirconyl nitrates at 300 °C. The systems studied are active and stable under mild conditions of the process (80—160 °C) and at high space velocities (to 100000 h–1) of the reaction mixture (2% CO, 1% O2, 40—50% H2). With an increase in the CuO content in the catalysts up to 20%, the degree of CO removal achieves 60% (120 °C and V = 35000 h–1) and further does not change appreciably. The contribution of oxygen participation into CO oxidation is virtually independent of the copper concentration in the sample and ranges from 65 to 75%. The dependences of the Arrhenius equation parameters for CO and H2 oxidation on the catalyst composition were determined, which makes it possible to calculate the conversion of reactants and selectivity of CO conversion under the specified conditions of the process. The addition of CO2 and H2O (12—15%) to the reaction mixture decreases the catalyst activity and simultaneously increases the selectivity of CO oxidation to 100%. It is shown by the TPR and X-ray diffraction methods that the combined decomposition of the starting Cu2+, Ce3+, and ZrO2+ nitrates produces solid solutions of oxides with a high content of CuO. The reductive pre-treatment of fresh samples of the studied catalysts results in the destruction of the solid solution and formation of highly dispersed Cu particles on the surface of Ce—Zr—O. These particles are active in CO oxidation.  相似文献   

16.
The catalysts of silver supported on mesoporous silica modified with Co3O4, CeO2, and ZrO2 were prepared by an impregnation method; characterized by X-ray diffraction analysis, temperature-programmed reduction, and low-temperature nitrogen adsorption; and studied in a model reaction of CO oxidation. It was found that the Ag/SiO2 system exhibited high activity in the reaction of CO oxidation, and the addition of transition metal oxides led to reduction of the temperature of 50% CO conversion by 40°C. The modification of Ag/SiO2 with cerium dioxide was found most effective because of the interaction of silver particles and CeO2 on the surface of silica gel.  相似文献   

17.
Catalytic and photocatalytic studies of binary and multicomponent semiconductors in the InP-CdS and ZnTe-CdS systems were performed for the examples of the oxidation of carbon(II) oxide and water and ethanol decomposition, respectively. The conditions of the most effective catalytic transformation of carbon monoxide were estimated from the results of a study of the adsorption of its participants over a wide temperature range, and the activity of catalysts was estimated from the ratio between the rate constants for the catalytic and noncatalytic reactions. Conclusions about the occurrence of photocatalytic decomposition were drawn from changes in pH of suspensions and the results of chromatographic analyses for hydrogen. Among the components of the InP-CdS and ZnTe-CdS systems, cadmium sulfide has the lowest catalytic activity (in the oxidation of CO) and the highest photocatalytic activity (in the photodecomposition of C2H5OH). Recommendations on the use of cadmium sulfide as an effective catalyst for the production of nontraditional fuel, hydrogen, are given.  相似文献   

18.
Catalysts based on uranium oxides were systematically studied for the first time. Catalysts containing various amounts of uranium oxides (5 and 15%) supported on alumina and mixed Ni-U/Al2O3 catalysts were synthesized. The uranium oxide catalysts were characterized using the thermal desorption of argon, the low-temperature adsorption of nitrogen, X-ray diffraction analysis, and temperature-programmed reduction with hydrogen and CO. The effects of composition, preparation conditions, and thermal treatment on physicochemical properties and catalytic activity in the reactions of methane and butane oxidation, the steam and carbon dioxide reforming of methane, and the partial oxidation of methane were studied. It was found that a catalyst containing 5% U on alumina calcined at 1000°C was most active in the reaction of high-temperature methane oxidation. For the Ni-U/Al2O3 catalysts containing various uranium amounts (from 0 to 30%), the introduction of uranium as a catalyst constituent considerably increased the catalytic activity in methane steam reforming and partial oxidation.  相似文献   

19.
The homogeneous chemical composition ceria–zirconia–alumina (Ce–Zr–Al–Ox) nano-alloy were successfully synthesized by surfactant-assisted parallel flow co-precipitation method and applied as supports for low temperature CO oxidation. The experiment conditions were studied in detailed. At 0.92 wt% Pd loading, 30,000 ppm CO could be completely oxidized to CO2 at 30 °C at a WHSV of 4,380 ml g?1 h?1 over the Pd/Ce–Zr–Al–Ox (nCe:nZr = 3:1) catalyst. Pd/Ce–Zr–Al–Ox catalysts were systematical studied by mean of BET, XRD and TEM analysis. XRD characterization showed that zirconium element entered into cubic structure of ceria and leaded to structure distortion. Addition of aluminum increased specific surface area of ceria–zirconia solid solution substantially. The average pore diameter of Ce–Zr–Al–Ox support palladium catalysts were the key impact factor for CO oxidation. When the Pd/Ce–Zr–Al–Ox catalysts had highly dispersed palladium nanoparticles, large average pore diameter, suitable surface area and pore volume, the activity of CO oxidation was the best.  相似文献   

20.
The geometrical structure of the Au‐Fe2O3 interfacial perimeter, which is generally considered as the active sites for low‐temperature oxidation of CO, was examined. It was found that the activity of the Au/Fe2O3 catalysts not only depends on the number of the gold atoms at the interfacial perimeter but also strongly depends on the geometrical structure of these gold atoms, which is determined by the size of the gold particle. Aberration‐corrected scanning transmission electron microscopy images unambiguously suggested that the gold particles, transformed from a two‐dimensional flat shape to a well‐faceted truncated octahedron when the size slightly enlarged from 2.2 to 3.5 nm. Such a size‐induced shape evolution altered the chemical bonding environments of the gold atoms at the interfacial perimeters and consequently their catalytic activity. For Au particles with a mean size of 2.2 nm, the interfacial perimeter gold atoms possessed a higher degree of unsaturated coordination environment while for Au particles with a mean size of 3.5 nm the perimeter gold atoms mainly followed the atomic arrangements of Au {111} and {100} facets. Kinetic study, with respect to the reaction rate and the turnover frequency on the interfacial perimeter gold atom, found that the low‐coordinated perimeter gold atoms were intrinsically more active for CO oxidation. 18O isotopic titration and Infrared spectroscopy experiments verified that CO oxidation at room temperature occurred at the Au‐Fe2O3 interfacial perimeter, involving the participation of the lattice oxygen of Fe2O3 for activating O2 and the gold atoms for CO adsorption and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号