首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New N2O2 donor type Schiff bases have been designed and synthesized by condensing acetylaceto-4-aminoantipyrine/acetoacetanilido-4-aminoantipyrine with 2-amino benzoic acid in ethanol. Solid metal complexes of the Schiff bases with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, FAB Mass, IR, UV-Vis., 1H NMR, and ESR spectral studies. The data show that the complexes have a composition of the ML type. The UV-Vis., magnetic susceptibility, and ESR spectral data of the complexes suggest a square planar geometry around the central metal ion, except for VO(IV) complexes, which have square-pyramidal geometry. The redox behavior of copper and vanadyl complexes has been studied by cyclic voltammetry. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, all the complexes are capable of cleaving calf thymus DNA plasmids, in order to compare the cleavage efficiency of all metal complexes in the two different ligand environments. In this assay, Cu(II), Ni(II), Co(II), and Zn(II) exhibit more cleavage efficiency than other metal ions. This article was submitted by the authors in English.  相似文献   

2.
Cu(II) complexes with Schiff bases DMIIMP, DMIIMBD, DMIIMBP, DMIIMCP, DMIIMMP, and DMIIMNP (see Introduction for definitions) are derived from condensation of 3,4-dimethyl 5-amino-isoxazole with salicylaldehyde and substituted salicylaldehydes. The newly synthesized ligands were characterized by IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The Cu(II) complexes were characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, thermogram, DTA, and single crystal analysis. The complexes have general formula [M(L)2]. The Schiff bases are bidentate coordinating through the azomethine nitrogen and phenolic oxygen of salicylaldehydes. Based on the analytical and spectral data, four-coordinate geometry is assigned for all the complexes. ESR and single crystal analysis suggests square planar geometry for all complexes. [Cu(DMIIMP)2] crystallizes in the orthorhombic system. Antimicrobial studies of Schiff bases and their metal complexes show significant activity with the metal complexes showing more activity than corresponding Schiff bases. Cytotoxicity of the copper complexes on human cervical carcinoma cells (HeLa) was measured using the Methyl Thiazole Tetrazolium assay.  相似文献   

3.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

4.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

5.
The synthesis, characterization and diuretic activity of four new biologically active complexes of Mg(II) and VO(II) with bidentate Schiff base ligand acetazolamide–salicylaldimine (L) obtained from the inserted condensation of 5-acetamido-1,3,4-thiadiazole-2-sulphonamide (acetazolamide) with salicylaldehyde in a 1:1 molar ratio have been reported. Using this bidentate ligand complexes of Mg(II), Mn(II), Fe(II) and VO(II) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using elemental analysis, FT-IR, electronic spectra, TGA, mass, particle size analysis and molar conductance measurements. The elemental analysis data suggest the stoichiometry to be 1:2 [M:L]. The molar conductance measurements suggest non-electrolytic nature of the complexes. Infrared spectral data agreed with the coordination to the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. On the basis of spectral studies, octahedral geometry is suggested for Mg(II), Mn(II), Fe(II) and square pyramidal geometry is suggested for VO(II) complexes. The pure drug, synthesized ligand and metal(II) complexes were screened for their antimicrobial activities against Eschericia coli, Bacillus subtilis, Aspergillus niger and Aspergillus flavous. The results show that the metal complexes were more active than the ligand and pure drug against these microbial species as expected. The ligand and its Mg(II) complexes was screened for their diuretic activity also.  相似文献   

6.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Hg(II), and VO(IV) have been designed and synthesized from the Schiff base derived from cinnamidene-4-aminoantipyrine and 2-aminophenol by involving the carbonyl group of 4-aminoantipyrine. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conduction, FAB mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of the ML2 type. The UV-Vis, magnetic susceptibility, and ESR spectral data of the complexes suggest an octahedral geometry around the central metal ion except the VO(IV) complex, which has a square-pyramidal geometry. The redox behavior of the copper and vanadyl complexes has been studied by cyclic voltammetry. The antimicrobial activity of the ligand and its complexes has been extensively studied on microorganisms such as Salmonella typhi, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Aspergillus niger, and Rhizoctonia bataicola. It has been found that most of the complexes have higher activities than that of the free ligand. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, the complexes are capable of cleaving calf thymus DNA. The text was submitted by the authors in English.  相似文献   

7.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

8.
Eight novel macrocyclic complexes as candidates of antifungal agent were designed and synthesized by incorporating an N4 donor site via the template condensation of 4,4′-diaminodiphenylmethane, formaldehyde. p-anisidine, and metal salts. The structural features were determined on the basis of their elemental analyses, magnetic susceptibility, molar conductance, FAB Mass, UV-Vis, and IR spectral data. Electronic absorption spectral data of the complexes suggest a square-planar geometry around the central metal ion except the VO(IV) complex, which shows square-pyramidal geometry. The stoichiometry of the complexes had been found to be 1: 1 (metal: ligand). Electrolytic nature of the complexes is assessed from their high conductance data. Monomeric nature of the complexes is confirmed from magnetic susceptibility values. The X-band ESR spectra of the Cu(II) and VO(IV) complexes in DMSO at 300 and 77 K were recorded, and their salient features are reported. The antifungal activity of the macrocyclic metal complexes were screened in vitro against Aspergillus niger, Aspergillus fluvus, Trichoderma harizanum, Trichoderma viridae, and Rhizoctonia solani. The data showed that they possessed antifungal activity. The article is published in the original.  相似文献   

9.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

10.
A series of metal(II) complexes ML and ML2 [where M?=?Cu(II), Co(II), Ni(II), Zn(II), Mn(II), Cd(II), and VO(II); L?=?2-hydroxyphenyl-3-(1H-indol-3-yl)-prop-2-en-1-one (HPIP)] have been prepared and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, NMR, Mass, and ESR spectral studies. Conductivity measurements reveal that the complexes are non-electrolytes, except VO(II) complex. Spectroscopy and other data show square pyramidal geometry for oxovanadium and octahedral geometry for the other complexes. Redox behavior of the copper(II) and vanadyl complexes has been studied with cyclic voltammetry. Antimicrobial activities against several microorganisms indicate that a few complexes exhibit considerable activity. The nuclease activity shows that the complexes cleave DNA. All synthesized compounds can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation efficiency of the ligand is higher than that of urea and KDP.  相似文献   

11.
[2 + 2] Condensation between 3,4-diaminobenzophenone and benzil in a 1:1 molar ratio in methanol at room temperature resulted in the formation of a novel Schiff base tetraimine macrocyclic ligand, (L): 5,6;11,12-dibenzophenone-2,3;8,9-tetraphenyl-1,4,7,10-tetraazacyclo-dodeca-1,3,7,9-tetraene. The macrocyclic complexes of the type, [FeLCl2]Cl and [MLCl2] [M = Co(II) and Cu(II)] have been prepared by reacting iron(III) chloride or metal(II) chlorides with the ligand, L in 1:1 molar ratio in methanol. The stoichiometry corresponding to the formation of the ligand framework, L was ascertained on the basis of results of elemental analyses,1H-NMR and FAB-mass measurements while that of complexes were ascertained by results of elemental analyses and in solution by Job’s method. The mode of bonding and the geometry of the complexes have been confirmed on the basis of i.r., u.v.–vis spectral findings and magnetic susceptibility measurements which revealed an octahedral geometry for all the complexes. The nature of the complexes was confirmed by conductometric studies.  相似文献   

12.
A new series of transition metal complexes of Cu(II), Ni(II), Zn(II) and VO(IV), were synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and acetylacetone. The structural features were arrived from their elemental analyses, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis., 1H NMR and ESR spectral studies. The data show that the complexes have composition of [ML]X type. The UV-Vis., magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except for VO(IV) complex which has square-pyramidal geometry. The redox behavior of copper and vanadyl complexes were studied by cyclic voltammetry. The antimicrobial screening tests were also recorded and gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that the copper and nickel complexes cleave DNA through redox chemistry, whereas other complexes are not effective.  相似文献   

13.
The Schiff base ligand 4-methyl-2-pentanone thiosemicarbazone (MPTSC) (HL) has been synthesized by the interaction of 4-methyl-2-pentanone (MP) and thiosemicarbazone (TSC). The Ni(II), Cu(II), and Fe(III) binary complexes of this ligand have been prepared. The ternary complexes of VO(IV) and Mn(II) ions with HL and glutamine (Glu) as a secondary ligand, in addition to VO(IV), Mn(II), and La(III) with HL and glycine (Gly) as a secondary ligand, have also been synthesized. The binary and ternary complexes have been characterized based on elemental analysis, IR, UV-VIS, molar conductance, mass spectra, magnetic moment, and ESR measurements. The magnetic moment, UV, and ESR studies suggest that Ni(II) and Cu(II) complexes are square planar, whereas Fe(III), Mn(II), and La(III) complexes have octahedral geometry, but VO(IV) ternary complexes have square pyramidal geometry. The analytical data indicate that the metal-to-ligand ratio in binary complexes is 1:1, except HL-Cu(II) chloride complex where the metal-to-ligand to secondary ligand ratio in ternary complexes is 1:1:1. The anticancer studies showed that the anticancer activity is in the decreasing order: ternary complexes > binary complexes > free ligand (HL).

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

14.
A series of Co(II) complexes have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and substituted salicylaldehydes. These complexes are insoluble in water but more soluble in DMF and DMSO. The complexes have been characterized by elemental analyses, spectral (IR, UV–Vis, 1H-NMR, FAB-mass, fluorescence), magnetic, thermal, solid-state DC electrical conductivity and molar conductance data. The molar conductivity values indicate that they are non-electrolytes. The elemental analyses of the complexes suggest a stoichiometry of the type Co · L1–L16 · 2H2O. The complexes have been considered as semiconductors on the basis of the solid-state DC electrical conductivity data. Fluorescence spectra of one Schiff base and its complex were investigated in various solvents and some of the Schiff bases and their complexes were evaluated for their antimicrobial activities.  相似文献   

15.
Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) metal complexes with Schiff bases derived from 3-formyl-4-hydroxycoumarin and semicarbazone are synthesized and characterized on the basis of elemental analysis, molar conductance, magnetic moment, IR, electronic, 1H NMR spectrum, and ESR spectrum, TGA, and X-ray diffraction powder methods. Molar conductance values indicate that the complexes are nonelectrolytic in nature. Magnetic moment and spectral studies suggest either tetrahedral or square-planar geometry around the central metal ions. The analytical data indicate that metal-to-ligand stoichiometry in all complexes is 1: 1. The article was submitted by the authors in English.  相似文献   

16.
Three novel oxovanadium(IV) Schiff base complexes [VO(Phen)(L)]SO4, where L = 4[(benzylidene)amino]antipyrine (Ia), 4[(cinnamalidene)amino]antipyrine (Ib) and 4[(2-chlorobenzylidene)amino]antipyrine (Ic) are designed using benzaldehyde/cinnamaldehyde/2-chlorobenzaldehyde with 4-aminoantipyrine, 1,10-phenonthroline, and vanadyl sulfate in the 1: 1: 1 molar ratio. They are synthesized by the template method. The geometry of the complexes is elucidated by elemental analyses, IR, UV-Vis, ESR, CV, FAB mass, magnetic susceptibility, and conductance data. FAB mass spectrum shows the degradation of the complexes. The electronic spectra of the complexes reveal their square pyramidal geometry in which the ligands act as tetradentate. Their electrochemical parameters, the anodic and cathodic potentials, and the number of electrons transferred are calculated. One quasi-reversible peak and one electron-transfer redox processes corresponding to the formation of a VO(II)/VO(III) couple are observed. The antimicrobial activity of synthesized complexes are tested. The results are compared with the standard penicillin. DNA cleavage experiments showed that Ia exhibits higher cleavage efficiency, whereas Ib and Ic have the lower cleavage efficiency. The text was submitted by the authors in English.  相似文献   

17.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

18.
New square-planar bis(macrocyclic)dicopper(II) complexes containing phenylene bridges between 16-membered pentaaza macrocyclic subunits have been synthesized via in-situ one pot template condensation reaction (IOPTCR) of aromatic nitrogen-nitrogen linker (R = 1,4-phenylenediamine; benzidine; 4,4′-diaminodiphenylmethane; 4,4′-diaminodiphenylether; 4,4′-diaminodiphenylsulfone), formaldehyde, bis(1,3-diaminopropane)copper(II) perchlorate and 1,3-dibromopropane in a 1:4:2:2 molar ratio results in the formation of new series of binuclear copper(II) complexes; 1-phenyl- (1); 1,1′-phenyl- (2); 1,1′-diphenylmethan- (3); 1,1′-diphenylether- (4); 1,1′-diphenylsulfone- (5) bis(1,3,7,11,15-pentaazacyclohexadecane)copper(II)), {[Cu([16]aneN5)]2R}(ClO4)4″. The formation of the macrocyclic framework and the mode of bonding of the complexes have been confirmed by data obtained from elemental analyses, UV-visible, FT-IR, 1H-NMR, electronic spectral studies, conductivity and magnetic susceptibility measurements. These bis(macrocyclic) complexes catalyzed efficiently the selective oxidation of tetrahydrofuran into tetrahydrofuran-2-one and a small amount of tetrahydrofuran-2-ol and 4-hydroxybutyraldehyde using dil. H2O2 as the oxidant.  相似文献   

19.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) have been synthesised using a Schiff base formed by the condensation of o-phenylenediamine with acetoacetanilide in alcohol medium. All the complexes were characterised on the basis of their microanalytical data, molar conductance, magnetic susceptibility, IR, UV-Vis1H NMR and ESR spectra. IR and UV-Vis spectral data suggest that all the complexes are square-planar except the Mn(II) and VO(II) chelates, which are of octahedral and square pyramidal geometry respectively. The monomeric and neutral nature of the complexes was confirmed by their magnetic susceptibility data and low conductance values. The ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported.  相似文献   

20.
Two new mononuclear complexes of copper(II), namely [CuL2] (1) and [CuL′2] (2) have been synthesized by reacting copper perchlorate with furfurylamine and salicylaldehyde or 2-hydroxyacetophenone, where L = (2-hydroxybenzyl-2-furylmethyl)imine and L′ = (2-hydroxymethylbenzyl-2-furylmethyl)imine, the respective asymmetric bidentate Schiff bases that are formed in situ to bind the Cu(II) ion. The complexes have been characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of both the complexes (1) and (2) adopt square planar geometry supported by weak intermolecular C–H···π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号