首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We review some recent developments in the conformal gravity theory that has been advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a PT symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori classical curvature, with all curvature having to result from quantization. In the conformal theory gravity requires no independent quantization of its own, with it being quantized solely by virtue of its being coupled to a quantized matter source. Moreover, because it is this very coupling that fixes the strength of the gravitational field commutators, the gravity sector zero-point energy density and pressure fluctuations are then able to identically cancel the zero-point fluctuations associated with the matter sector. In addition, we show that when the conformal symmetry is spontaneously broken, the zero-point structure automatically readjusts so as to identically cancel the cosmological constant term that dynamical mass generation induces. We show that the macroscopic classical theory that results from the quantum conformal theory incorporates global physics effects that provide for a detailed accounting of a comprehensive set of 138 galactic rotation curves with no adjustable parameters other than the galactic mass to light ratios, and with the need for no dark matter whatsoever. With these global effects eliminating the need for dark matter, we see that invoking dark matter in galaxies could potentially be nothing more than an attempt to describe global physics effects in purely local galactic terms. Finally, we review some recent work by ’t Hooft in which a connection between conformal gravity and Einstein gravity has been found.  相似文献   

2.
We describe a kinetic theory approach to quantum gravity by which we mean a theory of the microscopic structure of space-time, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotty poles: quantum matter field on the right and space-time on the left. Each rung connecting the corresponding knots represents a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein–Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: (1) deduce the correlations of metric fluctuations from correlation noise in the matter field; (2) reconstituting quantum coherence—this is the reverse of decoherence—from these correlation functions; and (3) use the Boltzmann–Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding space-time counterparts. This will give us a hierarchy of generalized stochastic equations—call them the Boltzmann–Einstein hierarchy of quantum gravity—for each level of space-time structure, from the the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).  相似文献   

3.
The variety and structure of quantum gravity effects are described and the expected magnitude of the effects and a corresponding strategy for the search for these effects is discussed. We present some of the “predictions” of possible effects. These are no real predictions because these derivations do not start from an established physical theory; they start from some hypothesis. Furthermore, in some cases even the derivation is unclear and not settled. PACS 04.80.Cc; 03.30.+p; 06.20.-f; 04.60.-m  相似文献   

4.
A quantum measurement-like event can produce any of a number of macroscopically distinct results, with corresponding macroscopically distinct gravitational fields, from the same initial state. Hence the probabilistically evolving large-scale structure of space-time is not precisely or even always approximately described by the deterministic Einstein equations. Since the standard treatment of gravitational wave propagation assumes the validity of the Einstein equations, it is questionable whether we should expect all its predictions to be empirically verified. In particular, one might expect the stochasticity of amplified quantum indeterminacy to cause coherent gravitational wave signals to decay faster than standard predictions suggest. This need not imply that the radiated energy flux from gravitational wave sources differs from standard theoretical predictions. An underappreciated bonus of gravitational wave astronomy is that either detecting or failing to detect predicted gravitational wave signals would constrain the form of the semi-classical theory of gravity that we presently lack.  相似文献   

5.
The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.  相似文献   

6.
The Einstein Equivalence Principle (EEP) provides the fundamental basis for any metric theory of gravity, such as general relativity. It implies that the only observable effects of gravitation are those mediated by the spacetime metric. Therefore, at the origin of a local freely falling frame there should be no observable effects of gravity. Null redshift tests provide an interesting way to test this prediction. In this test, the frequencies of two oscillators of a different type are compared at the same location in a gravitational field as the field is varied. Any variation in the frequency would signal a violation of the EEP. Here we shall propose a new test of the EEP called a null phase-delay experiment, in which the phase-delay of a signal propagated over a coil of optical fiber is monitored as the gravitational field at the coil is varied. An interesting test of the EEP in the solar gravitational field can be performed in the laboratory under carefully controlled conditions. With presently available technology, such an experiment could provide a 0.01% test.This essay received the third award from the Gravity Research Foundation, 1993-Ed.  相似文献   

7.
G. E. Volovik 《JETP Letters》2009,89(11):525-528
Recently Hořava proposed a model for gravity which is described by the Einstein action in the infrared, but lacks the Lorentz invariance in the high-energy region where it experiences the anisotropic scaling. We test this proposal using two condensed matter examples of emergent gravity: acoustic gravity and gravity emerging in the fermionic systems with Fermi points. We suggest that quantum hydrodynamics, which together with the quantum gravity is the non-renormalizable theory, may exhibit the anisotropic scaling in agreement with the proposal. The Fermi point scenario of emergent general relativity demonstrates that under general conditions, the infrared Einstein action may be distorted, i.e., the Hořava parameter λ is not necessarily equal 1 even in the low energy limit. The consistent theory requires special hierarchy of the ultra-violet energy scales and the fine-tuning mechanism for the Newton constant. The article is published in the original.  相似文献   

8.
Being the most fundamental interaction gravity not only describes a particular interaction between matter, but also covers issues like the notion of space and time, the role of the observer and the relativistic measurement process. Gravity is geometry and, as a consequence, allows for the existence of black holes, non-trivial topologies, a cosmological big bang, time-travel, warp drive, and other phenomena not known from non-relativistic physics. Here we present the experimental basis of General Relativity, in particular its foundations encoded in the Einstein Equivalence Principle and its predictions in the weak and strong gravity regime. We discuss various routes to search for effects possibly signaling effects of the looked for quantum theory of gravity. We lay emphasis on assumptions to be tested which are only rarely discussed in the literature like tests of Newton’s axioms, tests of conservation laws, etc. We propose an experiment testing the order of time derivatives in the equation of motion.  相似文献   

9.
A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σσ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method.  相似文献   

10.
We discuss the stability of semiclassical gravity solutions with respect to small quantum corrections by considering the quantum fluctuations of the metric perturbations around the semiclassical solution. We call the attention to the role played by the symmetrized 2-point quantum correlation function for the metric perturbations, which can be naturally decomposed into two separate contributions: intrinsic and induced fluctuations. We show that traditional criteria on the stability of semiclassical gravity are incomplete because these criteria based on the linearized semiclassical Einstein equation can only provide information on the expectation value and the intrinsic fluctuations of the metric perturbations. By contrast, the framework of stochastic semiclassical gravity provides a more complete and accurate criterion because it contains information on the induced fluctuations as well. The Einstein–Langevin equation therein contains a stochastic source characterized by the noise kernel (the symmetrized 2-point quantum correlation function of the stress tensor operator) and yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. These points are illustrated with the example of Minkowski space-time as a solution to the semiclassical Einstein equation, which is found to be stable under both intrinsic and induced fluctuations.  相似文献   

11.
We present a systematic exposition of the Lagrangian field theory for the massive spin-2 field generated in higher-derivative gravity upon reduction to a second-order theory by means of the appropriate Legendre transformation. It has been noticed by various authors that this nonlinear field overcomes the well-known inconsistency of the theory for a linear massive spin-2 field interacting with Einstein’s gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called “(Helmholtz-)Jordan frame” and “Einstein frame.” In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-2 field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame (each frame therefore provides a self-contained theory). The full equations of motion and the (variational) energy-momentum tensor for the spin-2 field in Einstein frame are given, and a simple but non-trivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-2 field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-2 field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected.  相似文献   

12.
The purely affine theory of gravity possesses a canonical formulation. For this and other reasons, it could be a promising candidate for quantum gravity. Motivated by these perspectives, we discuss spinorial matter coupled to gravity, where the latter is described by a connection having no a priori relation to a metric. We show that one can establish a truncated spinor formalism which, for special or approximate solutions to the gravitational equations, reduces to the standard formalism. As a consequence, one arrives at "matter-induced" Riemann–Cartan spaces solving the Weyl-Cartan space problem.  相似文献   

13.
We study the Maxwell–Einstein theory in the framework of effective field theories. We show that the modified one-loop renormalizable Lagrangian due to quantum gravitational effects contains a Lee–Wick vector field as an extra degree of freedom in the theory. Thus gravity provides a natural mechanism for the emergence of this exotic particle.  相似文献   

14.
We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology in the framework of the gravity theory proposed by Ho?ava, the so-called Ho?ava–Lifshitz theory of gravity. Beginning with the ADM representation of the action corresponding to this model, we construct the Lagrangian in terms of the minisuperspace variables and show that in comparison with the usual Einstein-Hilbert gravity, there are some correction terms coming from the Ho?ava theory. Either in the matter free or in the case when the considered universe is filled with a perfect fluid, the exact solutions to the classical field equations are obtained for the flat, closed and open FRW model and some discussions about their possible singularities are presented. We then deal with the quantization of the model in the context of the Wheeler–DeWitt approach of quantum cosmology to find the cosmological wave function. We use the resulting wave functions to investigate the possibility of the avoidance of classical singularities due to quantum effects.  相似文献   

15.
《Physics letters. A》1987,120(4):174-178
We investigate the implication of the week equivalence principles and Eötvös-Dicke experiments for gauge fields in a general framework. In particular, we show that the Galileo weak equivalence principle (WEP[I]) implies the Einstein equivalence principle (EEP) with one exception; however, the second weak equivalence statement (WEP[II]) implies EEP. For the exceptional case, there are anomalous torques on polarized test bodies. As an example, we apply our results to quantum chromodynamics.  相似文献   

16.
The Einstein equation for the Friedmann-Robertson-Walker metric plays a fundamental role in cosmology. The direct search of the exact solutions of the Einstein equation even in this simple metric case is sometime a hard job. Therefore, it is useful to construct solutions of the Einstein equation using a known solutions of some other equations which are equivalent or related to the Einstein equation. In this work, we establish the relationship the Einstein equation with two other famous equations namely the Ramanujan equation and the Chazy equation. Both these two equations play an important role in the number theory. Using the known solutions of the Ramanujan and Chazy equations, we find the corresponding solutions of the Einstein equation.  相似文献   

17.
BC Paul 《Pramana》1999,53(5):833-841
We obtain exact cosmological solutions of a higher derivative theory described by the Lagrangian L=R+2αR 2 in the presence of interacting scalar field. The interacting scalar field potential required for a known evolution of the FRW universe in the framework of the theory is obtained using a technique different from the usual approach to solve the Einstein field equations. We follow here a technique to determine potential similar to that used by Ellis and Madsen in Einstein gravity. Some new and interesting potentials are noted in the presence of R 2 term in the Einstein action for the known behaviours of the universe. These potentials in general do not obey the slow rollover approximation.  相似文献   

18.
We study the quantum constraints of a conformalinvariant action for a scalar field. For this purpose webriefly present a reformulation of the duality principleadvanced earlier in the context of generally covariant quantum field theory, and apply it toexamine the finite structure of the quantum constraints.This structure is shown to admit a dimensional coupling(a coupling mediated by a dimensional coupling parameter) of states to gravity. Invariancebreaking is introduced by defining a preferredconfiguration of dynamical variables in terms of thelargescale characteristics of the universe. In thisconfiguration a close relationship between the quantumconstraints and the Einstein equations isestablished.  相似文献   

19.
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.  相似文献   

20.
We review the induced-gravity approach according to which the Einstein gravity is a long-wavelength effect induced by underlying fundamental quantum fields due to the dynamical-scale symmetry breaking. It is shown that no ambiguities arise in the definition of the induced Newton and cosmological constants if one works with the path integral for fundamental fields in the low-scale region. The main accent is on a specification of the path integral which enables us to utilize the unitarity condition and thereby avoid ambiguities. Induced Einstein equations appear from the symmetry condition that the path integral of fundamental fields for a slowly varying metric is invariant under the local GL(4, R)-transformations of a tetrad, which contain the local Euclidean Lorentz, O(4)-rotations as a subgroup. The relationship to induced quantum gravity is briefly outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号