首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Molecular dynamics (MD) simulations have been performed on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (mppy(+)TFSI(-)) and N,N-dimethyl- pyrrolidinium bis(trifluoromethanesulfonyl)imide (mmpy(+)TFSI(+)) ionic liquids (ILs) doped with 0.25 mol fraction LiTFSI salt at 303-500 K. The liquid density, ion self-diffusion coefficients, and conductivity predicted by MD simulations were found to be in good agreement with experimental data, where available. MD simulations reveal that the Li(+) environment is similar in mppy(+)TFSI(-) and mmpy(+)TFSI(+) ILs doped with LiTFSI. The Li(+) cations were found to be coordinated on average by slightly less than four oxygen atoms with each oxygen atom being contributed by a different TFSI(-) anion. Significant lithium aggregation by sharing up to three TFSI(-) anions bridging two lithiums was observed, particularly at lower temperatures where the lithium aggregates were found to be stable for tens of nanoseconds. Polarization of TFSI(-) anions is largely responsible for the formation of such lithium aggregates. Li(+) transport was found to occur primarily by exchange of TFSI(-) anions in the first coordination shell with a smaller (approximately 30%) contribution also due to Li(+) cations diffusing together with their first coordination shell. In both ILs, ion self-diffusion coefficients followed the order Li(+) < TFSI(-) < mmpy(+) or mppy(+) with all ion diffusion in mmpy(+)TFSI(-) being systematically slower than that in mppy(+)TFSI(-). Conductivity due to the Li(+) cation in LiTFSI doped mppy(+)TFSI(-) IL was found to be greater than that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte but significantly lower than that for an ethylene carbonate/LiTFSI liquid electrolyte. Finally, the time-dependent shear modulus for the LiTFSI doped ILs was found to be similar to that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte on the subnanosecond time scale.  相似文献   

2.
The Li+ environment and transport in an ionic liquid (IL) comprised of Li+ and an anion of bis(trifluoromethanesulfonyl)imide anion (TFSI-) tethered to oligoethylene oxide (EO) (EO(12)TFSI-/Li+) were determined and compared to those in a binary solution of the oligoethylene oxide with LiTFSI salt (EO(12)/LiTFSI) by using molecular dynamics (MD) simulations and AC conductivity measurements. The latter revealed that the AC conductivity is 1 to 2 orders of magnitude less in the IL compared to the oligoether/salt binary electrolyte with greater differences being observed at lower temperatures. The conductivity of these electrolytes was accurately predicted by MD simulations, which were used in conjunction with a microscopic model to determine mechanisms of Li+ transport. It was discerned that structure-diffusion of the Li+ cation in the binary electrolyte (EO(12)/LiTFSI-) was similar to that in EO(12)TFSI-/Li+ IL at high temperature (>363 K), thus, one can estimate conductivity of IL at this temperature range if one knows the structure-diffusion of Li+ in the binary electrolyte. However, the rate of structure-diffusion of Li+ in IL was found to slow more dramatically with decreasing temperature than in the binary electrolyte. Lithium motion together with EO(12) solvent accounted for 90% of Li+ transport in EO(12)/LiTFSI-, while the Li+ motion together with the EO(12)TFSI- anion contributed approximately half to the total Li+ transport but did not contribute to the charge transport in IL.  相似文献   

3.
Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li+ with pure carbonates and ethylene carbonate (EC)‐based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06‐2X/6‐311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li‐ion solvation in carbonates and EC‐based mixtures. A strong local tetrahedral order involving four carbonates around the Li+ was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li+ ion with carbonates are negative and suggested the ion–carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li+ interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO‐EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li+ ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO‐EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li‐ion batteries, which complies with experiments and other theoretical results.  相似文献   

4.
Lithium salt solutions of Li(CF3SO2)2N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)2N(-), bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.  相似文献   

5.
A quantum chemistry study of Li(+) interactions with ethers, carbonates, alkanes, and a trifluoromethanesulfonylimide anion (TFSI(-)) was performed at the MP2, B3LYP, and HF levels using the aug-cc-pvDz basis set for solvents and TFSI(-) anion, and [8s4p3d/5s3p2d]-type basis set for Li. A classical many-polarizable force field was developed for the LiTFSI salt interacting with ethylene carbonate (EC), gamma-butyrolactone (GBL), dimethyl carbonate (DMC), acetone, oligoethers, n-alkanes, and perfluoroalkanes. Molecular dynamics (MD) simulations were performed for EC/LiTFSI, PC/LiTFSI, GBL/LiTFSI, DMC/LiTFSI, 1,2-dimethoxyethane/LiTFSI, pentaglyme/LiTFSI, and poly(ethylene oxide) (MW = 2380)/LiTFSI electrolytes at temperatures from 298 to 423 K and salt concentrations from 0.3 to 5 M. The ion and solvent self-diffusion coefficients, electrolyte conductivity, electrolyte density, LiTFSI apparent molar volumes, and structure of the Li(+) cation environment predicted by MD simulations were found in good agreement with experimental data.  相似文献   

6.
超支化聚氨酯固体电解质导电性能的光谱学研究   总被引:2,自引:0,他引:2  
用超支化聚氨酯 +线性聚氨酯作为基体 ,LiClO4作为离子源制得聚合物固体电解质 .用Raman光谱 ,FTIR光谱等光谱学方法研究了聚合物电解质中盐离子和聚合物基团之间的相互作用 .研究表明超支化聚氨酯对盐有较好的溶解作用 .研究还表明超支化聚氨酯加入有利于提高体系的电导率  相似文献   

7.
FTIR spectra have been recorded and analyzed for solutions of lithium perchlorate in propylene carbonate (PC), diethyl carbonate (DEC), and PC + DEC mixtures. It has been shown that the carbonyl stretch bands for PC and DEC are very sensitive to the interaction between Li+ and the solvent molecules. They split with addition of LiClO4, indicating a strong interaction of Li+ with PC and DEC through the oxygen group of PC and both oxygen and ether oxygen atoms of DEC. In conjunction with molecular orbital calculation, the optimized geometries of solvation are given. In addition, solvent separated ion pairs and contact ion pairs were observed in LiClO4/DEC solutions, and no preferential solvation of Li+ in LiClO4/PC + DEC solutions were detected.  相似文献   

8.
The liquid structures of nonaqueous electrolytes composed of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and acetamide, with LiTFSI/acetamide molar ratios of 1:2, 1:4, and 1:6, were studied by molecular dynamics simulations. The simulations indicate that the Li+ cations prefer to be six-coordinate by the sulfonyl oxygen atoms of the TFSI- anions and the carbonyl oxygen atoms of the acetamide molecules, rather than by the most electronegative nitrogen atom of the TFSI- anion. Therefore, close Li+-TFSI- contact pairs exist in the system. The TFSI- anion prefers to provide only one of four possible oxygen atoms to coordinate to the same Li+ cation. Three conformations (cis, trans, and gauche) of the TFSI- anions were found to coexist in the liquid electrolyte. At high salt concentrations, the TFSI- anions mainly adopt the gauche conformation in order to provide more oxygen atoms to coordinate to different Li+ cations, while simultaneously reducing the repulsion among the Li+ cations. On the other hand, the fraction of TFSI- anions adopting the cis conformation is largest for the system with the molar ratio of 1:6, in which many clusters, mainly composed of the Li+ cations and the TFSI- anions, are immersed in the acetamide molecules. The size and charge distribution of clusters were also investigated. In the system with the molar ratio of 1:2, nearly all of the ions in the PBC (periodic boundary conditions) box aggregate into a bulky cluster that gradually disassembles into small clusters with decreasing salt concentration. The addition of acetamide molecules was found to effectively relax the liquid electrolyte structure, and the system with the molar ratio of 1:4 was found to exhibit a more homogeneous liquid structure than the other two electrolyte systems with molar ratios of 1:2 and 1:6.  相似文献   

9.
The microstructures of pure water and aqueous NaCl solutions over a wide range of salt concentrations (0-4 m) under ambient conditions are characterized by X-ray scattering and molecular dynamics (MD) simulations. MD simulations are performed with the rigid SPC water model as a solvent, while the ions are treated as charged Lennard-Jones particles. Simulated data show that the first peaks in the O...O and O...H pair correlation functions clearly decrease in height with increasing salt concentration. Simultaneously, the location of the second O...O peak, the signature of the so-called tetrahedral structure of water, gradually disappears. Consequently, the degree of hydrogen bonding in liquid water decreases when compared to pure fluid. MD results also show that the hydration number around the cation decreases as the salt concentration increases, which is most likely because some water molecules in the first hydration shell are occasionally substituted by chlorine. In addition, the fraction of contact ion pairs increases and that of solvent-separated ion pairs decreases. Experimental data are analyzed to deduce the structure factors and the pair correlation functions of each system. X-ray results clearly show a perturbation of the association structure of the solvent and highlight the appearance of new interactions between ions and water. A model of intermolecular arrangement via MD results is then proposed to describe the local order in each system, as deduced from X-ray scattering data.  相似文献   

10.
Neutron diffraction experiments were carried out on concentrated aqueous solutions of beryllium chloride at three concentrations: 1.5, 3, and 6 molal. By working with a specific ("null") mixture of heavy water (D2O) and water (H2O), information on the local structure around Be2+ ions was extracted directly. For all three BeCl2 solutions, the results show that the Be2+ ion has a well-defined 4-fold coordination shell that is dominated by oxygen atoms. There is also a relatively small probability (10-15%) that there are direct contacts between Be2+ and Cl- at a distance of approximately 2.2 angstroms. The oxygen atoms of the highly structured Be2+ first hydration shell are found to be situated at 2.6 angstroms apart, and form a pyramidal structure, in agreement with recent MD simulation results. The Cl- ions have approximately seven oxygen atoms (water molecules) in their hydration shells sited at 3.2 angstroms.  相似文献   

11.
采用分子动力学(MD)方法研究了熔融Li(电极)-KCl(电解质)界面上离子的扩散行为。熔融界面上离子的扩散动力学通过离子质心的均方位移(MSD)和速度自相关函数(VACF)进行研究,扩散系数由MSD(t)函数线性区间的斜率和VACF(t)函数积分得到。模拟结果表明,在熔融的Li-KCl界面上,Li+离子在浓度梯度的驱动下穿过界面发生定向迁移,导致双电层的形成和外电路上电流的输出。Li+离子的扩散系数比K+和Cl-离子的大7~8倍,说明在界面上Li+离子是主要的载荷子,热电池的电荷传输机制主要与Li+离子的扩散运动有关。由Nernst-Einstein公式对电导率进行估算,由扩散到KCl层中的Li+离子产生的电导率约为0.4 S.cm-2,对应的电流密度估算值为3.27×105A.cm-2。  相似文献   

12.
Classical molecular dynamics (MD) and non-equilibrium steered molecular dynamics (SMD) simulations were performed on the molecular structure of the potassium channel KcsA using the GROMOS 87 force fields. Our simulations focused on mechanistic and dynamic properties of the permeation of potassium ions through the selectivity filter of the channel. According to the SMD simulations a concerted movement of ions inside the selectivity filter from the cavity to extracellular side depends on the conformation of the peptide linkage between Val76 and Gly77 residues in one subunit of the channel. In SMD simulations, if the carbonyl oxygen of Val76 is positioned toward the ion bound at the S3 site (gate-opened conformation) the net flux of ions through the filter is observed. When the carbonyl oxygen leaped out from the filter (gate-closed conformation), ions were blocked at the S3 site and no flux occurred. A reorientation of the Thr75-Val76 linkage indicated by the CHARMM-based MD simulations performed Berneche and Roux [(2005) Structure 13:591–600; (2000) Biophys J 78:2900–2917] as a concomitant process of the Val76-Gly77 conformational interconversion was not observed in our GROMOS-based MD simulations.  相似文献   

13.
The coordination and energetics of low‐lying structures of [Li(EC)n]+ have been analyzed by density functional theory (DFT) and polarizable continuum model (PCM) at the B3LYP/6‐311+G (d, p) level. The results show that the first shell around the lithium ion is fully occupied with four ethylene carbonate (EC) molecules in both gas phase and solvent. The examination on the contribution of vibration entropy to free energy of isomers of [Li(EC)n]+ reveals that the stability of the best candidates at zero‐temperature cannot be maintained at finite temperatures due to the effects of their vibration entropy. In addition, structural transitions between the most stable four‐coordinated and the metastable three‐coordinated structure demand a very low energy barrier, suggesting that at a finite temperature the four‐coordinated and three‐coordinated isomers of [Li(EC)n]+ can coexist in the EC organic solvent lithium salt electrolyte. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
应用分子动力学模拟了25 ℃和50 ℃时新型室温熔盐二(三氟甲基磺酸酰)亚胺锂[LiN(SO2CF3)2, LiTFSI]与尿素(摩尔比为1:3.6)体系的结构与动力学性质. 在两个温度下体系的微观结构基本相同, Li+的配位数约为5, 且都是与溶剂和阴离子中的氧原子发生配位. 对TFSI-的研究表明, 每个TFSI-只提供四个氧中的一个与Li+配位; 而且在Li+的配位层中, TFSI-具有顺、反和gauche 等不同的构象, 并且不同构象出现的几率会随着温度的改变而改变.  相似文献   

15.
A comprehensive study is carried out using quantum chemical computation and molecular dynamics (MD) simulations to gain insight into the interaction between Ca(2+) ions and the most important class of calcium channel antagonists--nifedipine. First, the chelating structures and energetic characters of nifedipine-Ca(2+) in the gas phase are explored, and 25 isomers are found. The most favorable chelating mode is a tridentate one, that is, Ca(2+) binds to two carbonyl O atoms and one nitryl O atom, where Ca(2+) is above the plane of the three O atoms to form a pyramidal structure. Accurate geometric structures, relative stabilities, vertical and adiabatic binding energies, and charge distributions are discussed. The differences in the geometries and energies among these isomers are analyzed from the contributions of chelating sites, electrostatics and polarizations, steric repulsions, and charge distributions. The interconversions among isomers with similar geometries and energies are also investigated because of the importance of the geometric transformation in the biological system. Furthermore, certain numbers of water molecules are added to the nifedipine-Ca(2+) system to probe the effect of water. A detailed study is performed on the hydrated geometries on the basis of the most stable isomer 1. Stepwise hydration can weaken the nifedipine-Ca(2+) interaction, and the chelating sites of nifedipine are gradually replaced by the added water molecules. Hexacoordination is found to be the most favorable geometry no matter how many water molecules were added, which can be verified by the MD simulations. The transfer of water molecules from the inner shell to the outer shell is also supported by MD simulations of the hexahydrated complexes.  相似文献   

16.
A quantum chemistry-based many-body polarizable force field has been developed for two model solid-electrolyte interphase (SEI) components: dilithium ethylene dicarbonate (Li(2)EDC) and lithium methyl carbonate (LiMC). Molecular dynamics (MD) simulations of amorphous Li(2)EDC and LiMC were performed at temperatures from 393 to 600 K. Simulations reveal that Li(+) is coordinated by approximately 4.6 oxygen atoms from -COO(-) groups coming from different alkyl carbonate molecules. Charge transport in Li(2)EDC was found to be almost entirely due to Li(+). The temperature dependence of the ionic conductivity of the SEI model compounds Li(2)EDC and LiMC was found to be significantly stronger than that of liquid electrolytes (e.g., ethylene carbonate + LiTFSI), yielding extrapolated conductivities of the Li(2)EDC on order of 10(-10) S/cm at -30 degrees C.  相似文献   

17.
A detailed investigation of the hydration structure of Zn2+, Ni2+, and Co2+ in water solutions has been carried out combining X-ray absorption fine structure (EXAFS) spectroscopy and Molecular Dynamics (MD) simulations. The first quantitative analysis of EXAFS from hydrogen atoms in 3d transition metal ions in aqueous solutions has been carried out and the ion-hydrogen interactions have been found to provide a detectable contribution to the EXAFS spectra. An accurate determination of the structural parameters associated with the first hydration shell has been performed and compared with previous experimental results. No evidence of significant contributions from the second hydration shell to the EXAFS signal has been found for these solutions, while the inclusion of the hydrogen signal has been found to be important in performing a quantitative analysis of the experimental data. The high-frequency contribution present in the EXAFS spectra has been found to be due to multiple scattering (MS) effects inside the ion-oxygen first coordination shell. MD has been used to generate three-body distribution functions from which a reliable analysis of the MS contributions to the EXAFS spectra of these systems has been carried out.  相似文献   

18.
FTIR studies of PVC/PMMA blend based polymer electrolytes   总被引:1,自引:0,他引:1  
The polymer electrolytes composing of the blend of polyvinyl chloride-polymethyl methacrylate (PVC/PMMA) with lithium triflate (LiCF3SO3) as salt, ethylene carbonate (EC) and dibutyl phthalate (DBP) as plasticizers and silica (SiO2) as the composite filler were prepared. FTIR studies confirm the complexation between PVC/PMMA blends. The CCl stretching mode at 834 cm-1 for pure PVC is shifted to 847 cm-1 in PVC-PMMA-LiCF3SO3 system. This suggests that there is interaction between Cl in PVC with Li+ ion from LiCF3SO3. The band due to OCH3 at 1150 cm-1 for PVC-PMMA blend is shifted to 1168 cm-1 in PVC-PMMA-LiCF3SO3 system. This shift is expected to be due to the interaction between Li+ ion and the oxygen atom in PMMA. The symmetric vibration band and the asymmetric vibration band of LiCF3SO3 at 1033 and 1256 cm-1 shifted to 1075 and 1286 cm-1 in the DBP-EC plasticized PVC-PMMA-LiCF3SO3 complexes. The interaction between Li+ ions and SiO2 will lead to an increase in the number of free plasticizers (which does not interact with Li+ ions). When the silica content increases from 2% to 5%, the intensity of the peak at 896 cm-1 (due to the ring breathing vibration of free EC) increases in PVC-PMMA-LiCF3SO3-DBP-EC system.  相似文献   

19.
Ion selectivity using membranes comprising functionalized carbon nanotubes   总被引:1,自引:0,他引:1  
In this paper, we use applied mathematical modelling to investigate the transportation of ions inside functionalized carbon nanotubes, and in particular the transport of sodium and chloride ions. This problem is important for future ion transport and detection, and also arises in ion diffusion inside complex biological channels. Some important future applications of the system for a solvent are ultra-sensitive biosensors and electrolytes for alkaline fuel cells. We model the interactions between the ions and the nanotube by the Lennard-Jones potential and the interactions between the ions and the functional group by the Coulomb potential, while the atomic interactions between the ions is modeled by both the Lennard-Jones and Coulomb potentials. We further assume that the carbon atoms, the charge of the functional group, and the ions are all evenly distributed on the surface of the nanotube, the entry of the nanotube and the envisaged ionic surface, respectively, so that we may use the continuous approximation to calculate the corresponding potential energies. For nanotubes located in salt water, the molecular effects arising from the bulk solution can be extracted from MD simulation studies. Assuming that the solvent is absent, we first determine the acceptance radii for the sodium or chloride ion entering the nanotube, both with and without a functional group, and we then determine the equilibrium positions of two identical ions inside the nanotube. Finally, the transportation time of an intruding ion through the nanotube is deduced from the total axial force. In the presence of a solvent, the molecular effects arising from the bulk solution are examined and we establish that the presence of a solvent stabilizes the selectivity of the ions.  相似文献   

20.
Fourier Transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies and Scanning Electron Microscopy (SEM) were used to investigate ionic association, hydrogen bonding and morphology in a family of sol–gel derived lithium triflate (LiCF3SO3)-doped di-urethane cross-linked poly(ε-caprolactone) (PCL(530))/siloxane hybrid electrolytes. The materials studied, with compositions ∞ > n  0.5 (where n – composition – expresses the molar ratio of PCL(530) ester repeat units per Li+ ion), are non-porous and homogeneous. The Li+ ions interact with the urethane and ester carbonyl oxygen atoms within the whole range of salt concentration analyzed, promoting the formation of hydrogen-bonded aggregates. The composition dependence of the relative concentration of “free” anions and coordinated anions (weakly coordinated anions, ion pairs or [Li(CF3SO3)2] triplets, aggregates I ([Li2(CF3SO3)]+) and aggregates II ([Li3(CF3SO3)]2+) in all the samples is in perfect agreement with the values of the room temperature ionic conductivity reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号