首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A New Memetic Algorithm for the Asymmetric Traveling Salesman Problem   总被引:2,自引:0,他引:2  
This paper introduces a new memetic algorithm specialized for the asymmetric instances of the traveling salesman problem (ATSP). The method incorporates a new local search engine and many other features that contribute to its effectiveness, such as: (i) the topological organization of the population as a complete ternary tree with thirteen nodes; (ii) the hierarchical organization of the population in overlapping clusters leading to the special selection scheme; (iii) efficient data structures. Computational experiments are conducted on all ATSP instances available in the TSPLIB, and on a set of larger asymmetric instances with known optimal solutions. The comparisons show that the results obtained by our method compare favorably with those obtained by several other algorithms recently proposed for the ATSP.  相似文献   

2.
In this paper we introduce survivable network design problems under a two-stage stochastic model with fixed recourse and finitely many scenarios. We propose a new cut-based formulation based on orientation properties which is stronger than the undirected cut-based model. We use a two-stage branch&cut algorithm for solving the decomposed model to provable optimality. In order to accelerate the computations, we suggest a new cut strengthening technique for the decomposed L-shaped optimality cuts that is computationally fast and easy to implement.  相似文献   

3.
The asymmetric travelling salesman problem with replenishment arcs (RATSP), arising from work related to aircraft routing, is a generalisation of the well-known ATSP. In this paper, we introduce a polynomial size mixed-integer linear programming (MILP) formulation for the RATSP, and improve an existing exponential size ILP formulation of Zhu [The aircraft rotation problem, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 1994] by proposing two classes of stronger cuts. We present results that under certain conditions, these two classes of stronger cuts are facet-defining for the RATS polytope, and that ATSP facets can be lifted, to give RATSP facets. We implement our polyhedral findings and develop a Lagrangean relaxation (LR)-based branch-and-bound (BNB) algorithm for the RATSP, and compare this method with solving the polynomial size formulation using ILOG Cplex 9.0, using both randomly generated problems and aircraft routing problems. Finally we compare our methods with the existing method of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408-427]. It turns out that both of our methods are much faster than that of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408-427], and that the LR-based BNB method is more efficient for problems that resemble the aircraft rotation problems.  相似文献   

4.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

5.
In this paper we propose two exact algorithms for solving both two-staged and three staged unconstrained (un)weighted cutting problems. The two-staged problem is solved by applying a dynamic programming procedure originally developed by Gilmore and Gomory [Gilmore and Gomory, Operations Research, vol. 13, pp. 94–119, 1965]. The three-staged problem is solved by using a top-down approach combined with a dynamic programming procedure. The performance of the exact algorithms are evaluated on some problem instances of the literature and other hard randomly-generated problem instances (a total of 53 problem instances). A parallel implementation is an important feature of the algorithm used for solving the three-staged version.  相似文献   

6.
Aiming at the development of an exact solution method for registration problems, we present two different Branch & Bound algorithms for a mixed integer programming formulation of the problem. The first B&B algorithm branches on binary assignment variables and makes use of an optimality condition that is derived from a graph matching formulation. The second, geometric B&B algorithm applies a geometric branching strategy on continuous transformation variables. The two approaches are compared for synthetic test examples as well as for 2-dimensional medical data. The results show that medium sized problem instances can be solved to global optimality in a reasonable amount of time.  相似文献   

7.
The paper investigates a capacitated vehicle routing problem with two objectives: (1) minimization of total travel cost and (2) minimization of the length of the longest route. We present algorithmic variants for the exact determination of the Pareto-optimal solutions of this bi-objective problem. Our approach is based on the adaptive ε-constraint method. For solving the resulting single-objective subproblems, we apply a branch-and-cut technique, using (among others) a novel implementation of Held-Karp-type bounds. Incumbent solutions are generated by means of a single-objective genetic algorithm and, alternatively, by the multi-objective NSGA-II algorithm. Experimental results for a benchmark of 54 test instances from the TSPLIB are reported.  相似文献   

8.
Several procedures for the identification of facet inducing inequalities for the symmetric traveling salesman polytope are given. An identification procedure accepts as input the support graph of a point which does not belong to the polytope, and returns as output some of the facet inducing inequalities violated by the point. A procedure which always accomplishes this task is calledexact, otherwise it is calledheuristic. We give exact procedures for the subtour elimination and the 2-matching constraints, based on the Gomory—Hu and Padberg—Rao algorithms respectively. Efficient reduction procedures for the input graph are proposed which accelerate these two algorithms substantially. Exact and heuristic shrinking conditions for the input graph are also given that yield efficient procedures for the identification of simple and general comb inequalities and of some elementary clique tree inequalities. These procedures constitute the core of a polytopal cutting plane algorithm that we have devised and programmed to solve a substantial number of large-scale problem instances with sizes up to 2392 nodes to optimality.Partial financial support by NSF grant DMS8508955 and ONR grant R&T4116663.Work done while visiting New York University. Partial financial support by a New York University Research Challenge Fund grant and ONR grant R&T4116663.  相似文献   

9.
In this paper, we present a branch-and-price algorithm to solve two well-known vehicle routing problems with profits, the Capacitated Team Orienteering Problem and the Capacitated Profitable Tour Problem. A restricted master heuristic is applied at each node of the branch-and-bound tree in order to obtain primal bound values. In spite of its simplicity, the heuristic computes high quality solutions. Several unsolved benchmark instances have been solved to optimality.  相似文献   

10.
We consider the following classes of nonlinear programming problems: the minimization of smooth functions subject to general constraints and simple bounds on the variables; the nonlinearl 1-problem; and the minimax problem. Numerically reliable methods for solving problems in each of these classes, based upon exploiting the structure of the problem in constructing simple differentiable penalty functions, are presented.This research was made possible by NSERC Grant No. A8442.The author would like to thank Mrs. J. Selwood of the Department of Combinatories and Optimization, University of Waterloo, Ontario, Canada for her excellent typesetting.This work was carried out in the Department of Combinatories and Optimization, University of Waterloo, Waterloo, Ontario, Canada.  相似文献   

11.
Arc-annotated sequences are useful in representing the structural information of RNA and protein sequences. The

problem has recently been introduced in [P.A. Evans, Algorithms and complexity for annotated sequence analysis, PhD Thesis, University of Victoria, 1999; P.A. Evans, Finding common subsequences with arcs and pseudoknots, in: Proceedings of 10th Annual Symposium on Combinatorial Pattern Matching (CPM'99), in: Lecture Notes in Comput. Sci., vol. 1645, 1999, pp. 270–280] as a framework for studying the similarity of arc-annotated sequences. In this paper, we consider arc-annotated sequences with various arc structures and present some new algorithmic and complexity results on the problem. Some of our results answer an open question in [P.A. Evans, Algorithms and complexity for annotated sequence analysis, PhD Thesis, University of Victoria, 1999; P.A. Evans, Finding common subsequences with arcs and pseudoknots, in: Proceedings of 10th Annual Symposium on Combinatorial Pattern Matching (CPM'99), in: Lecture Notes in Comput. Sci., vol. 1645, 1999, pp. 270–280] and some others improve the hardness results in [P.A. Evans, Algorithms and complexity for annotated sequence analysis, PhD Thesis, University of Victoria, 1999; P.A. Evans, Finding common subsequences with arcs and pseudoknots, in: Proceedings of 10th Annual Symposium on Combinatorial Pattern Matching (CPM'99), in Lecture Notes in Comput. Sci., vol. 1645, 1999, pp. 270–280].  相似文献   

12.
In this paper, we consider the routing problem described in Mohanty and Cassandras (Ref. 1). As in Ref. 1, we show that the optimal Bernoulli split to minimize mean time in the system is asymptotically independent of the variance of the service time. We give simple proofs of the results in that paper. We exploit the fact that the optimal split to minimize the mean queueing time is variance independent and the special structure of the Karush–Kuhn–Tucker optimality conditions to derive the optimal solution. Apart from being very straightforward, the proofs also give insight into the reason for the existence of the variance-independent asymptotically optimal routing policy.  相似文献   

13.
The precedence constrained traveling salesman problem (TSP-PC), or the sequential ordering problem (SOP), consists of finding an optimal TSP tour that will also satisfy the namesake precedence constraints, typically specified as a partial order or a directed acyclic graph. Its dynamic programming (DP) solution was proposed as early as 1979, however, by late 1990s, it mostly fell out of use in plain TSP-PC. Revisiting this method, we are able to close one of the long-standing TSPLIB SOP problem instances, ry48p.3.sop, and provide improved bounds on its time complexity. Harnessing the “omnivorous” nature of DP, we prove the validity of DP optimality principle for TSP-PC with both (i) abstract cost aggregation function, which may be the arithmetic + operation as in “ordinary” TSP or max as in Bottleneck TSP, or any other left-associative nondecreasing in the first argument operation and (ii) travel cost functions depending on the set of pending tasks (“sequence dependence”). Using the latter generalization, we close several TD-SOP (time-dependent TSP-PC) instances based on TSPLIB SOP as proposed by Kinable et al., including rbg253a.sop. Through the restricted DP heuristic, which was originally formulated for time-dependent TSP by Malandraki and Dial, we improve the state-of-the-art upper bounds for all yet unsolved TSPLIB-based TD-SOP instances, including those with more than 100 cities. We also improve worst-case complexity estimates for DP in TSP-PC.  相似文献   

14.
The purpose of this paper is to give necessary and sufficient conditions of optimality for a general mathematical programming problem, using not a linear approximation to the constraint function but an approximation possessing certain convexity properties. Such approximations are called sum-convex. Theorems of the alternative involving sum-convex functions are also presented as part of the proof.This work is part of the author's PhD Thesis under the supervision of Professor S. Zlobec at McGill University.  相似文献   

15.
The Steiner connectivity problem has the same significance for line planning in public transport as the Steiner tree problem for telecommunication network design. It consists in finding a minimum cost set of elementary paths to connect a subset of nodes in an undirected graph and is, therefore, a generalization of the Steiner tree problem. We propose an extended directed cut formulation for the problem which is, in comparison to the canonical undirected cut formulation, provably strong, implying, e.g., a class of facet defining Steiner partition inequalities. Since a direct application of this formulation is computationally intractable for large instances, we develop a partial projection method to produce a strong relaxation in the space of canonical variables that approximates the extended formulation. We also investigate the separation of Steiner partition inequalities and give computational evidence that these inequalities essentially close the gap between undirected and extended directed cut formulation. Using these techniques, large Steiner connectivity problems with up to 900 nodes can be solved within reasonable optimality gaps of typically less than five percent.  相似文献   

16.
Where to locate one or several facilities on a network so as to minimize the expected users-closest facility transportation cost is a problem well studied in the OR literature under the name of median problem. In the median problem users are usually identified with nodes of the network. In many situations, however, such assumption is unrealistic, since users should be better considered to be distributed also along the edges of the transportation network. In this paper we address the median problem with demand distributed along edges and nodes. This leads to a global-optimization problem, which can be solved to optimality by means of a branch-and-bound with DC bounds. Our computational experience shows that the problem is solved in short time even for large instances.  相似文献   

17.
Because of the many important applications of quadratic programming, fast and efficient methods for solving quadratic programming problems are valued. Goldfarb and Idnani (1983) describe one such method. Well known to be efficient and numerically stable, the Goldfarb and Idnani method suffers only from the restriction that in its original form it cannot be applied to problems which are positive semi-definite rather than positive definite. In this paper, we present a generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way. Supported in part by ATERB, NSERC and the ARC. Much of this work was done in the Department of Mathematics at the University of Western Australia and in the Department of Combinatorics and Optimization at the University of Waterloo.  相似文献   

18.
A spanning caterpillar in a graph is a tree composed by a path such that all vertices not in the path are leaves. In the Minimum Spanning Caterpillar Problem (MSCP) each edge has two costs: a path cost when it belongs to the path and a connection cost when it is incident to a leaf. The goal is to find a spanning caterpillar minimizing the sum of all path and connection costs. In this paper we formulate the as a minimum Steiner arborescence problem. This reduction is the basis for the development of an efficient branch-and-cut algorithm for the MSCP. We als developed a GRASP heuristic to generate primal bounds. Experiments carried out on instances adapted from TSPLIB 2.1 revealed that the exact algorithm is capable to solve to optimality instances with up to 300 vertices in reasonable time. They also showed that our heuristic yields very high quality solutions.  相似文献   

19.
This paper describes new models and exact solution algorithms for the fixed destination multidepot salesmen problem defined on a graph with n nodes where the number of nodes each salesman is to visit is restricted to be in a predefined range. Such problems arise when the time to visit a node takes considerably longer as compared to the time of travel between nodes, in which case the number of nodes visited in a salesman’s tour is the determinant of their ‘load’. The new models are novel multicommodity flow formulations with O(n2) binary variables, which is contrary to the existing formulations for the same (and similar) problems that typically include O(n3) binary variables. The paper also describes Benders decomposition algorithms based on the new formulations for solving the problem exactly. Results of the computational experiments on instances derived from TSPLIB show that some of the proposed algorithms perform remarkably well in cases where formulations solved by a state-of-the-art optimization code fail to yield optimal solutions within reasonable computation time.  相似文献   

20.
This paper presents a new branching scheme for the asymmetric traveling salesman problem (ATSP) based on clusters. A cluster is defined as a node set with the characteristic that there exists an optimal solution in which the nodes in the node set are visited consecutively. The paper considers identification of clusters, implementation of a cluster based branching scheme, and cluster based dominance tests. The new approach is implemented in a branch and bound algorithm using a well-known additive bounding procedure. Considerable savings in computing time are obtained compared to previously published assignment based branch and bound algorithms for the ATSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号