首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transverse magnetic anisotropy and lattice plane anisotropy of stress-annealed Fe–Cu–Nb–Si–B amorphous ribbons have been studied. The GMI effect or impedance ratio decreased gradually with increasing applied tensile stress. The transverse anisotropy field (Hk) corresponded to the full width at half maximum (FWHM) of the GMI curves. A linear response was found between the applied tensile stress (σ) and the transverse anisotropy field (Hk), and it was seen from the linear expression that annealing without stress resulted in a very small Hk of ~200 A/m. We also calculated the strains from the elongations obtained during the stress annealing process, the results showed that the strain and applied stress were linearly related and for a zero-tensile stress, the elastic strain was negative (?0.0219) showing that contraction dominates during annealing without tensile stresses. The lattice plane anisotropy (Δd) calculated from XRD peaks was also linearly related to the applied tensile stress. The lattice spacing in the direction parallel to the tensile stress was elongated while the lattice spacing in the direction perpendicular to the tensile stress was compressed.  相似文献   

2.
Electrical and optical properties of thin film of amorphous silicon nanoparticles (a-Si) are studied. Thin film of silicon is synthesized on glass substrate under an ambient gas (Ar) atmosphere using physical vapour condensation system. We have employed Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) to study the morphology and microstructure of this film. It is observed that this silicon film contains almost spherical nanoparticles with size varying between 10 and 40 nm. The average surface roughness is about 140 nm as evident from the AFM image. X-ray diffraction analysis is also performed. The XRD spectrum does not show any significant peak which indicates the amorphous nature of the film. To understand the electrical transport phenomena, the temperature dependence of dc conductivity for this film is studied over a temperature range of (300-100 K). On the basis of temperature dependence of dc conductivity, it is suggested that the conduction takes place via variable range hopping (VRH). Three-dimensional Mott's variable range hopping (3D VRH) is applied to explain the conduction mechanism for the transport of charge carriers in this system. Various Mott's parameters such as density of states, degree of disorder, hopping distance, hopping energy are estimated. In optical properties, we have studied Fourier transform infra-red spectra and the photoluminescence of this amorphous silicon thin film. It is found that these amorphous silicon nanoparticles exhibits strong Si-O-Si stretching mode at 1060 cm−1, which suggests that the large amount of oxygen is adsorbed on the surface of these a-Si nanoparticles. The photoluminescence observed from these amorphous silicon nanoparticles has been explained with the help of oxygen related surface state mechanism.  相似文献   

3.
InP (001) samples were irradiated with 200 MeV Au ions at different fluences. The surface nanotopographical changes due to increasing fluence of swift heavy ions were observed by Atomic Force Microscopy (AFM), where the onset of a large increase in surface roughness for fluences sufficient to cause complete surface amorphization was observed. Transmission Electron Microscopy (TEM) was used to observe bulk-ion tracks that formed in InP, and high resolution TEM (HRTEM) revealed that single-ion tracks might not be amorphous in nature. Surface-ion tracks were observed by AFM in the form of ill-defined pits (hollows) of ~12 nm in diameter (width). In addition, Rutherford backscattering was utilized to follow the formation of disorder to amorphization in the irradiated material. The interpretation of the large increase in surface roughness with the onset of amorphization can be attributed to the plastic phenomena induced by the change of states from crystalline to amorphous by ion irradiation. The text was submitted by the authors in English.  相似文献   

4.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

5.
Highly ordered Co0.71Pt0.29 alloy nanowire arrays have been fabricated successfully by direct current electro-deposition into the pores of a porous anodic aluminum oxide (AAO) template. SEM and TEM images reveal that the nanowires of array are uniform, well isolated, and parallel to one another. The aspect ratio of nanowires is over 200. XRD and EDS pattern indicates that amorphous Co0.71Pt0.29 structure was formed during electro-deposition. In amorphous sample, magnetocrystal anisotropy is very small, therefore, shape anisotropy plays a dominant role which leads to strong perpendicular anisotropy. High coercivity (Hc=1.7 kOe) and squareness (Mr/Ms) around 0.7 were obtained in the samples when the field was applied parallel to the axis of the nanowires. However, when it changed to polycrystalline structure after annealing, due to the competition of magnetocrystal anisotropy and shape anisotropy, the sample did not display perpendicular anisotropy.  相似文献   

6.
The high exciton binding energy and band gap energy of ZnO thin films open the prospect of fabricating semiconductor lasers in the ultraviolet spectral range. A prerequisite for laser diode fabrication is highly p-doped ZnO which was not reproducibly obtained up to now. Without intentional doping ZnO exhibits n-type conduction. ZnO thin films have been obtained by radio-frequency assisted pulsed laser deposition. A metallic Zn target was used for ablation in an oxygen and nitrogen RF discharge. The electrical and morphological properties of the films grown on Si were studied by Atomic Force Microscopy (AFM), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), optical absorption and Hall Effect measurements for different ratios between the nitrogen and oxygen content. The AFM images of the as-grown ZnO films reveal high quality surfaces with low values for the surface roughness and a sharp distribution of grains sizes as an effect of the RF discharge. The XRD patterns for all samples exhibit only (002) and (004) peaks indicating that the c-axis is always oriented normal to the substrate surface. The films present p-type conductivity with different carrier concentration and mobility depending on the nitrogen/oxygen ratio.  相似文献   

7.
Curie temperature, crystal structure and crystallization behavior of amorphous alloys with the stoichiometry Fe81−xNixZr7B12 (x=10–60) have been studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and AC-magnetization (TMAG) measurements as functions of temperature. The thermal stability of long-range magnetic order, TC vs. Ni content in as-quenched amorphous alloys exhibits maximum at 352 °C for x=40. The primary crystallization has been detected during annealing at the first crystallization stage of all ribbons investigated.  相似文献   

8.
We report microstructure evolution in as-spun Fe78Si9B13 ribbons under various wheel speeds (s), which was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). With decreasing s, the volume fraction of the residual amorphous phase (Va) in the as-spun ribbons decreases gradually, and the total exothermic heat of the crystallization in the DSC curves also decreases, but the ratio of the exothermic heat of the second crystallization to the first one is on the contrary. α-Fe is found in the ribbon with s of 32.9 m/s, while α-Fe, eutectic α-Fe+Fe2B, and Fe3Si phases are found in ribbons with s of 25.6 and 18.3 m/s. The phase precipitating behavior in cooling processes is well consistent with the annealing process in the literatures.  相似文献   

9.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

10.
The nanocrystallization process of soft ferromagnetic (Fe0.99Mo0.01)78Si9B13 ribbons has been studied in detail. Microstructural and ferromagnetic properties are examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), differential scanning calorimetry (DSC) and magnetization measurements. The Curie and crystallization temperatures are determined to be TC=665 K and Tx=750 K, respectively. The Tx value is in well agreement with DSC measurement results. XRD patterns had shown two metastable phases (Fe23B6, Fe3B) which were formed under in situ nanocrystallization process. These metastable phases embedded in the amorphous matrix have a significant effect on magnetic ordering. The ultimate nanocrystalline (NC) phases of α-Fe(Mo, Si) and Fe2B at optimum annealing temperature had been observed respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of NC ferromagnetism, which suggest the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.  相似文献   

11.
SrMn2As2 single crystals were grown by the Sn flux method. Structural features of these crystals were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results show that the single crystal has a rhombohedral structure and grows along the c-axis direction. The microstructure and layered structural features of this material have been examined by SEM and high-resolution TEM observations. The measurements of in-plane resistivity as a function of temperature demonstrate that SrMn2As2 undergoes a phase transition of semiconductor-insulator at a low temperature; the active energies are estimated to be Δ=0.64 and 0.29 eV for two distinct regions. Magnetic measurements show a clear antiferromagnetic (AFM) transition at about TN=125 K. Therefore, the SrMn2As2 material is an AFM insulator at low temperatures and could be a potential parent compound for superconductors.  相似文献   

12.
The surface and bulk magnetic properties of amorphous FeNbB ribbons in as-quenched state are investigated using various non-destructive methods. The conversion electron Mössbauer spectroscopy has detected the presence of crystalline phase at both surfaces of ribbon sample while the bulk was amorphous. The coexistence of crystalline and amorphous phase was shown also in the X-ray diffraction pattern. Magnetic properties measured by bulk sensitive vibrating sample magnetometer (VSM) strongly differs from the surface characteristics investigated by magneto-optical Kerr effect (MOKE).  相似文献   

13.
We report on structural characterization of void-structures created by a micro-explosion at the locus of a tightly focused femtosecond laser pulse inside the crystalline phase of Al2O3 (R3c space group). The transmission electron microscopy (TEM), micro-X-ray diffraction (XRD) analysis, and Raman scattering revealed a presence of strongly structurally modified amorphous regions around the void-structures. We discuss issues of achieving the required resolution for structural characterization and assignment of newly formed phases of nano-crystallites by TEM, XRD, and Raman scattering from micro-volumes of modified materials enclosed inside the bulk of the host phase.  相似文献   

14.
The crystallization behaviour and evolution of nanoparticles in amorphous Al-Ni-Mischmetal (Mm) and Al-Ni-La alloys during heat treatment have been studied. Rapidly solidified ribbons were obtained by induction melting and ejecting the melt onto a rotating Cu wheel in an Ar atmosphere. The crystallization behaviour of the melt-spun ribbons was investigated using differential scanning calorimetry and X-ray diffractometry (XRD). XRD studies confirmed that all the ribbons were fully amorphous. Al-Ni-Mm systems showed a three-stage crystallization process whereas Al-Ni-La system, in general, showed a two-stage crystallization process on annealing. Crystallization kinetics was analysed by Kissinger and Johnson-Mehl-Avrami approaches. In Al-Ni-La alloys, the crystallization pathways depend on the La concentration. Microhardness of all the ribbons was examined at different temperatures and correlated with the corresponding evolution of phases.  相似文献   

15.
用原子力显微镜(AFM)观测了不同张应力退火的Fe基纳米晶(Fe73.5Cu1Nb3Si13.5B9)薄带横断面的形貌,并结合X射线衍射(XRD)图谱对不同张应力退火的Fe基纳米晶薄带的介观结构进行分析;测量了不同张应力退火Fe基纳米晶薄带的纵向驱动巨磁阻抗(LDGMI)曲线及横向磁各向异性场;认为张应力退火Fe基纳米晶薄带感生横向磁各向异性场的介观结构机理,是由于外加张应力退火产生由非晶相包裹着的α-Fe(Si)纳米晶粒(包裹晶粒)的横向优势团聚. 关键词: 应力退火 介观结构 AFM 团聚  相似文献   

16.
Ellipsometric measurements of the surface of ribbons of amorphous Co59Fe5Ni10Si11B15 and Fe61Co20Si5B14 alloys before and after thermal and laser treatments and Auger analysis of their surface layers have been performed in order to determine the character of changes in the composition of these layers after the noted treatments. It is found that magnetostriction significantly affects the processes of modification of the atomic structure of the surface layer of ribbons of amorphous iron-or cobalt-based alloys and formation of a microrelief of their surface from the noncontacting side after cryogenic treatments under the same conditions. Specifically, magnetostriction is characteristic of amorphous iron-based alloys and is responsible for the optical anisotropy induced in the skin layer. It is established that annealing of ribbons of a Co-based amorphous alloy, even at the temperature T = 425°C, changes the character of the spectral dependence of the IR optical conductivity of this alloy to that described by the Drude relation. This change fixes the beginning of ordering of the atomic structure of the surface layer of the material with the formation of microscopic crystallization regions.  相似文献   

17.
We report new evidences for the thermodynamic instability of whisker crystals in the Bi–Sr–Ca–Cu–O (BSCCO) system. Annealing treatments at 90°C have been performed on two sets of samples, which were monitored by means of X-Rays Diffraction (XRD) and Atomic Force Microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi2Sr2CuCa2O8+x (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers.  相似文献   

18.
The iron granular solid, in which ultrafine iron particles are dispersed, has been prepared with both SiO2 and Cu matrices using the sol-gel method. The structure and morphology of these granular solid samples are investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The magnetic properties are measured using a vibrating sample magnetometer with 20 kOe maximum applied field. It is found that the coereivity decreases very slightly with temperature from 80 to 300 K for these Fe–SiO2 and Fe–Cu granular solid samples with different average size of iron particles from 50 to 300 Å. The magnetic anisotropy has been obtained from the measured magnetization curves for these granular solid samples using the law of approach to saturation, and the obtained values of the effective magnetic anisotropy are all more than 106 erg/cm3, which are larger than the value of the magnetocrystalline anisotropy for bulk iron. The coercivity vs temperature for these granular solid samples has been calculated using the Kneller and Luborsky theory, in which the magnetic anisotropy values obtained from the law of approach to saturation are used. The trends of the calculated coercivity as a function of temperature are in reasonable agreement with the observations.  相似文献   

19.
We have grown hematite (αFe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to αFe 2 O 3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.  相似文献   

20.
ZnO, SnO2 and zinc stannate thin films were deposited using filtered vacuum arc deposition (FVAD) system on commercial microscope glass and UV fused silica substrates (UVFS) at room temperature (RT). The structural and morphological analyses were performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM), respectively. XRD patterns of ZnO films deposited at RT had strongly c-axis orientation, whereas SnO2 and zinc stannate films had amorphous structure as they did not have any defined patterns. Average crystalline size and surface grain size of ZnO films were ∼16 nm, as determined from diffraction line broadening and AFM images, respectively. Optical constants in the 250-1100 nm wavelength range were determined by variable angle spectroscopic ellipsometry and transmission measurements. The transmission of the deposited films in the VIS was 80-90%, affected by interference. The refractive indices and the extinction coefficients of deposited ZnO, SnO2 and zinc stannate films were in the range 1.87-2.15 and 0.02-0.04, depending on wavelengths and deposition parameters. The optical band gap (Eg) was determined by the dependence of the absorption coefficient on the photon energy at short wavelengths. Its values for ZnO, SnO2 and zinc stannate were in the range 3.25-3.30 eV, 3.60-3.98 eV and 3.43-3.52 eV, respectively, depending on the deposition pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号