首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

2.
A portable UHV-compatible gas aggregation cluster source, capable of depositing clean mass-selected nanoclusters in situ, has been used at synchrotron radiation facilities to study the magnetic behaviour of exposed and Co-coated Fe clusters in the size range 250 to 540 atoms. X-ray magnetic circular dichroism (XMCD) studies of isolated and exposed 250-atom clusters show a 10% enhancement in the spin magnetic moment and a 75% enhancement in the orbital magnetic moment relative to bulk Fe. The spin moment monotonically approaches the bulk value with increasing cluster size but the orbital moment does not measurably decay till the cluster size is above ∼ 400 atoms. The total magnetic moments for the supported particles though higher than the bulk value are less than those measured in free clusters. Coating the deposited particles with Co in situ increases the spin moment by a further 10% producing a total moment per atom close to the free cluster value. At low coverages the deposited clusters are super-paramagnetic at temperatures above 10 K but a magnetic remanence at higher temperature emerges as the cluster density increases and for cluster films with a thickness greater than 50 ?(i.e. 2-3 layers of clusters) the remanence becomes greater than that of an Fe film of the same thickness produced by a conventional deposition source. Thick cluster-assembled film show a strong in-plane anisotropy. Received 14 December 2000  相似文献   

3.
The field dependence of spin and orbital magnetic moments of Fe in L10 FePt magnetic thin films was investigated using X-ray magnetic circular dichroism (XMCD). The spin and orbital moments were calculated using the sum rules; it was found that the spin and orbital moment of Fe in L10 FePt films are ∼2.5 and 0.2 μB, respectively. The relative XMCD asymmetry at Fe L3 peak on the dependence of applied field suggested that the majority magnetic moment of L10 FePt films resulted from Fe.  相似文献   

4.
The magnetism of epitaxial ultrathin films of Fe on ZnSe(001) has been investigated by x-ray magnetic circular dichroism down to the submonolayer regime. In contrast to other metallic ferromagnet/semiconductor interfaces, no reduction of the Fe magnetic moment was found at the Fe/ZnSe(001) interface. Furthermore, a significant enhancement of the Fe magnetic moment compared to the bulk value was observed for coverages up to one monolayer in agreement with theoretical predictions. We also demonstrate that the magnetic properties of the Fe/ZnSe(001) interface remain stable against thermal annealing up to 300 degrees C, a prerequisite for the future development of efficient spintronics devices.  相似文献   

5.
Large spin–orbit interaction produces large orbital magnetic moments in narrow energy bands. Since the orbital character of the wave functions is more important in orbital than in spin magnetism, the limitations of the local spin density approximation become evident. It is possible to keep the orbital dependence of the exchange interactions by using an orbital polarization scheme or by using Hartree–Fock theory with screened Slater integrals for exchange. This leads to an enhancement of the calculated orbital moment when the magnetism is strong. Recently calculated magnetic moments and calculated sum rules for X-ray magnetic circular dichroism in US are described. Received: 23 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

6.
Interface reaction and magnetism of epitaxially-grown Fe on InAs(100) are studied by core-level photoemission (As 3d and In 4d) and Fe 2p X-ray magnetic circular dichroism using synchrotron radiation. The reactivity of Fe/InAs(100) is relatively low compared to that of other interfaces involving deposition of 3d metals on III-V semiconductors. As a consequence, we observe a magnetic signal at Fe L2, 3 edges for the lowest thicknesses studied (1 ML). The atomic magnetic moment reaches a value close to that of the bulk α-Fe (2.2 μ B) for Fe coverages exceeding 5 ML. A ferromagnetic compound with approximate stoichiometry of FeAs is formed at the interface. The orbital magnetism represents between 12 and 20% of the total momentum, due to 3d density of states depletion and to crystal-field modification of the electronic levels. These properties make the Fe/InAs(100) interface very promising for spin-tunneling devices. Received 4 April 2002 / Received in final form 13 May 2002 Published online 31 July 2002  相似文献   

7.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

8.
Ultrathin Ag (0.5 nm) pinning layers (APLs) were symmetrically inserted into [Fe/Pt] bilayers to introduce controllable defects on the interfaces between Ag and Fe/Pt multilayers. The highest coercivity 7700 Oe and remanent squareness 0.95 were obtained with five APLs. The large enhancement in coercivity (75% increment compared with that without APL) is due to the relative uniform defects that introduced pinning effects on the interfaces between the APLs and Fe/Pt multilayers. According to the distribution of angule- dependent coercivity of Fe/Pt multilayers without and with APLs, a tendency is suggested of weakened domain-wall motion while enhanced rotation of reverse domain mode.  相似文献   

9.
We have used x-ray magnetic circular dichroism, which offers a unique capability to give element specific information at submonolayer sensitivity, to determine the spin and orbital magnetic moments at the Fe/GaAs(100) interface. The wedge samples, grown by molecular beam epitaxy at room temperature, consisted of 0.25-1 monolayer (ML) Fe on GaAs(100)-4x6 capped with 9 ML Co and have shown Fe spin moments of (1.84-1.96)micro(B) and a large orbital enhancement. Our results demonstrate unambiguously that the Fe/GaAs(100)-4x6 interface is ferromagnetic with a bulklike spin moment, which is highly promising for spintronics applications.  相似文献   

10.
We present an ab initio study of the magnetic surface reconstructions of the B2 FeV alloy using a self-consistent tight-binding linearized muffin tin orbital method developed in the atomic spheres approximation. For (001) and (111), the surface reconstruction stabilizes configurations unstable in the bulk alloy. When Fe is at the (001) surface, a c(2×2) in-plane antiferromagnetic order is found to be the ground state with magnetic moments of -2.32 and 2.27. A p(1×1) ↓ ferromagnetic order is displayed in case of V toplayer with a magnetic moment of -1.83. At the (111) surface, we obtain for Fe toplayer two solutions p(1×1)↑ and p(2×1). The configuration p(1×1)↑ is found to be the ground state with a magnetic moment per atom of 2.34. For V toplayer, only the p(1×1) ↓ solution is obtained with a moment of -0.84. In all cases, the Fe-V coupling is always antiparallel like in the bulk. Our results are discussed and compared to experiments. Received 11 August 2000 and Received in final form 8 June 2001  相似文献   

11.
A method for characterization of sub-nanometer thick Co/V and Co/Mo interfaces is proposed that uses magneto-optical ellipsometry. Both the polar Kerr rotation and ellipticity are fitted simultaneously to different models of interface layer. The magneto-optical data are measured for varying thicknesses of the cobalt layer and overlayer by scanning of a laser beam over the samples with two orthogonal wedges. Decrease of magneto-optical effect at both interfaces Co/V and Co/Mo were observed, which corresponds to interface layers of thicknesses ranging from one to two monoatomic layers. In the case of vanadium, the interface layer is sharper and can be explained either by reduced magnetic moment of cobalt, or by anti-parallel magnetic moment of vanadium near the Co/V interface.  相似文献   

12.
Guo  G. Y.  Ebert  H. 《Hyperfine Interactions》1996,97(1):11-18
A detailed theoretical study of the magnetic moments and magnetic hyperfine fields in several Fe multilayers (Fe fcc(001)/5X fcc(001), X=Cu and Ag, and Fe bcc(001)/5X fcc(001), X=Ag and Au) as well as in bulk Fe is presented. The calculations have been performed using the spin-polarized, relativistic linear muffin-tin orbital (SPR-LMTO) method of band structure calculation. Therefore, not only the contribution to the hyperfine fields due to the conventional Fermi contact interaction but also due to the spin dipolar and orbital contributions induced by the crystal field and by spin-orbit coupling are accounted for. To decompose the hyperfine field of non-s-electrons into these contributions it has been assumed that they are proportional to the corresponding so-called magnetic dipole moment and the orbital magnetic moment, respectively. In contrast to previous results for pure metals and alloys not only the orbital but also the spin dipolar hyperfine field was found to be non-negligible. The anisotropy of the hyperfine field determined by calculations for in-plane and perpendicular orientation of the magnetisation was found to be very pronounced and closely connected with the corresponding anisotropy of the magnetic dipole moment and the orbital moment.  相似文献   

13.
To unravel the mystery of the recently observed giant magnetic moments of Fe and Co in Cs films, orbital-polarization corrected relativistic spin density functional calculations have been performed. Unlike other transition–metal systems where the orbital magnetic moments are quenched, Fe and Co in Cs as well as in other alkali metals are found to possess a giant orbital moment of 2–3 μB along with a large spin moment. Also, these free atom-like spin and orbital magnetic moments in Cs would not be squashed under large lattice contractions up to 23% around the impurity atoms. The induced moments on the host atoms are small. The results offer an explanation for the origin of the giant magnetic moments of Fe and Co in Cs films.  相似文献   

14.
We investigate the spin-polarized electronic and magnetic properties of bilayer SnSe with transition-metal (TM) atoms doped in the interlayer by using a first-principles method. It shows that Ni dopant cannot induce the magnetism in the doped SnSe sheet, while the ground state of V, Cr, Mn, Fe and Co doped systems are magnetic and the magnetic moment mainly originates from 3d TM atom. Two types of factors, which reduce the magnetic moment of TM atoms doped in bilayer SnSe, are identified as spin-up channel of the 3d orbital loses electrons to SnSe sheet and spin-down channel of the 3d orbital gains electrons from 4s orbital. The spin polarization is found to be 100% at Fermi level for the Mn and Co atoms doped system, while the Ni-doped system is still a semiconductor with a gap of 0.26 eV. These results are potentially useful for development of spintronic devices.  相似文献   

15.
First-principles plane-wave pseudopotential calculations of the adhesion, bonding and magnetism of the interface between the ferromagnetic bcc Fe and non-magnetic HfC are performed. The work of adhesion for C- and Hf-site Fe/HfC interfaces is calculated. High adhesion at C-site interface is found and Fe–C polar covalent bonds are formed across the interface. The magnetic moments of Fe atoms at interface are increased in both interfaces. The effect of the magnetism on the electronic structure of Fe/HfC interface is also investigated. It is shown that the change in band of majority-spin leads to enhance the magnetic moment of Fe.  相似文献   

16.
《中国物理 B》2021,30(9):96105-096105
In view of the importance of enhancing ferromagnetic(FM) coupling in dilute magnetic semiconductors(DMSs),the effects of strain on the electronic structures and magnetic properties of(Ga,Fe)Sb were examined by a first-principles study.The results of the investigation indicate that Fe_(Ga) substitution takes place in the low-spin state(LSS) with a total magnetic moment of 1μB in the strain range of-3% to 0.5%,which transitions to the high-spin state(HSS) with a total magnetic moment of 5μB as the strain changes from 0.6% to 3%.We attribute the changes in the amount and distribution of the total moment to the influence of the crystal field under different strains.The FM coupling is strongest under a strain of about0.5%,but gradually becomes weaker with increasing compressive and tensile strains.The magnetic coupling mechanism is discussed in detail.Our results highlight the important contribution of strain to magnetic moment and FM interaction intensity,and present an interesting avenue for the future design of high Curie temperature(T_C) materials in the(Ga,Fe)Sb system.  相似文献   

17.
Giant magnetoresistance of Co–Fe–B/Cu multilayers fabricated in the sputtering atmosphere, where the amount of oxygen impurity is varied, is discussed in connection with their interfacial roughness. The magnetoresistance (MR) ratio of Co–Fe/Cu multilayers is enhanced by up to 33% when the oxygen content is varied between 10 and 100 ppm of processing Ar gas. The enhancement of the MR ratio was due to the flattening effect of impurity oxygen on the multilayer interfaces: the root mean square roughness of the multilayer was decreased from 7.5 to 5 Å. With increasing boron content in Co–Fe layers, however, the enhancing effect of MR ratio by oxygen diminished and nearly vanished for 12 at%-B–(Co–Fe) case. The strong affinity of boron for oxygen is suggested as a probable mechanism.  相似文献   

18.
The structures and magnetic properties of Fe4/Cun (n=2, 4) superlattices have been investigated by the first-principles pseudopotential plane-wave method based on spin density approximation. Compared with the ideal fcc-Cu bulk structure, for the optimized Fe4/Cu2 model, obvious contraction of interlayer distances occurs on the interior Fe layers, whereas the interlayer distances of Fe layers in Fe4/Cu4 are expanded. The anti-parallel alignment magnetic moment and negative polarization of the interior Fe layer have been found in the Fe4/Cu2 model. This can be explained in terms of the magnetic-volume effect, and the moment of anti-parallel alignment attributes to the contracted interlayer distances between the interior Fe layers. The MR ratio has also been evaluated by means of the two-current model. The MR ratio of the Fe4/Cu2 model (4.89%) is much small than that of the Fe4/Cu4 one (23.65%).  相似文献   

19.
The electronic structure of the RFe 6 Ge 6 compounds ( R = Sc, Lu, Ti, Zr, Hf and Nb) of HfFe 6 Ge 6 -type structure has been studied using the muffin-tin Korringa-Kohn-Rostoker method in a non-relativistic approach. The chemical bonding is analyzed based on the l-decomposed site projected densities of states. Spin-dependent changes in the R nd- Fe 3d covalent bond are shown to be responsible for the experimentally observed rise in the Fe moment and hyperfine field upon increasing the R valency. The limited quantitative agreement between theoretical and experimental values is interpreted as being due to a non-negligible orbital moment and to a significant asphericity in the spin density at the iron site. The theoretical results also forecast a strong increase of the Ge(2e) transferred hyperfine field with the R valency. Received 20 December 2002 Published online 4 June 2003 RID="a" ID="a"e-mail: Thomas.Mazet@lcsm.uhp-nancy.fr RID="b" ID="b"Associé au CNRS (UMR 7555)  相似文献   

20.
Krishnamurthy  V. V.  Suzuki  M.  Kawamura  N.  Ishikawa  T.  Kohori  Y. 《Hyperfine Interactions》2001,136(3-8):361-365
The formation of an induced 5d magnetic moment on Ir in Fe97Ir3, Co95Ir5 and Ni95Ir5 alloys has been investigated by X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectra (XAS) measurements at Ir L 2,3 edges. Using a sum rule which relates the integrals of these spectra with the ground state expectation value of the orbital angular momentum 〈L Z 〉 of the probed atom, the orbital moment m orb of Ir could be determined as −0.071(2) μ B in an Fe host, −0.067(2) μ B in a Co host and −0.041(1) μ B in a Ni host. The spin magnetic moment m spin of Ir is also found to be the maximal in Fe and the minimal in Ni. The total moment of Ir is found to be approximately 1/5 of total moment of Fe, 2/13 of the total moment of Co, and 1/4 of the total moment of Ni. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号