首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   

2.
Low-frequency magnetic properties of ferromagnetic composite wires were studied with and without coating by ferrofluid. Non-magnetic CuBe wires of 0.1 mm diameter were electroplated with FeCoNi layer of 1 μm thickness. Magnetization curves were measured in the frequency range of 10 Hz–3 kHz. The composite CuBe/FeCoNi/ferrofluid material shows a hysteretic behaviour in a small field. The hysteresis loop of ferrofluid covered electroplated wire is not a simple sum of the ferrofluid “wire” plus non-covered wire signals. It indicates an interaction between magnetic wire and ferrofluid which can be revealed by low-frequency measurements. The combination “electroplated wire/ferrofluid” can be considered as a new type of composite magnetic material consisting of solid magnetic core coated by complementary liquid magnetic material. Low-frequency measurements in presence of ferrofluid can be a useful method to study magnetic properties of ferromagnets.  相似文献   

3.
In this paper, the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of agricultural plants when cultivated in the presence of different concentrations of aqueous ferrofluid, ranging between 10 and 250 μL/L. The agricultural species (Zea mays) with a major role in the life of people was chosen for the experimental project. The water-based ferrofluid was prepared following the chemical co-precipitation method, using tetramethylammonium hydroxide as magnetite core stabilizer. Microscopic investigations (cytogenetic tests) resulted in the evaluation of the mitotic and chromosomal aberration index. They appeared to increase following ferrofluid addition.  相似文献   

4.
X-ray microtomography is used to visualize, in-situ, the three-dimensional nature of the magnetic field induced macro-structures (>1 μm) inside a bulk (∼1 mm diameter) magnetite-particle-mineral oil ferrofluid sample. Columnar structures of ∼10 μm diameter were seen under a 0.35 kG applied magnetic field, while labyrinth type structures ∼4 μm in width were seen at 0.55 kG. The structures have height/width aspect ratios >100. The results show that the magnetite volume fraction is not constant within the structures and on average is considerably less than a random sphere packing model.  相似文献   

5.
Based on the analysis of the magnetostriction for Terfenol-D composites, Terfenol-D 2-2 magnetostrictive composites have been prepared with laminations perpendicular to [1 1 2] axes. Then one of the samples was annealed in the vacuum at 423 K for 15 min at the magnetic field of 240 kA/m, which is along the direction of laminations and vertical to the [1 1 2] axes of the specimen. The static magnetostriction λ and dynamic magnetostrictive coefficient d33 of samples were measured under the compressive stress of 0, 2, 4, 6 and 8 MPa. Effects of the compressive stress and the magnetic field heat treatment on the magnetostriction λ have been investigated. It is found that the magnetostriction of 2-2 composites can be improved under the compressive stress when the magnetic field is larger than 20 kA/m. The magnetostriction of 2-2 composites with the magnetic field heat treatment increases under compressive stress, and it can reach 1390×10−6 at the magnetic field of 200 kA/m and under the compressive stress of 4 MPa, much larger than the value of 860×10−6 without the magnetic field heat treatment. The highest magnetostriction of the 2-2 composite with the magnetic field heat treatment can reach 1530×10−6. The dynamic magnetostrictive coefficient d33 of 2-2 composites with the magnetic field heat treatment have been improved, compared with that without magnetic field heat treatment. The maximum value of d33 of the sample with magnetic field heat treatment is 71% larger than that without magnetic field heat treatment.  相似文献   

6.
We experimentally characterize the performance of a miniature thermomagnetic pump, where suitably imposed temperature and magnetic field gradients are used to drive ferrofluid in a 2 mm diameter glass capillary tube, without application of any external pressure gradient. Such a pump can operate in a hermetically sealed micro electromechanical system configuration without any moving part, and is thus capable of handling microfluidic samples with little risk of contamination. In the experiment, the ferrofluid in the capillary is exposed to a magnetic field using a solenoid; a small resistive heater wrapped on the tube wall is used to create temperature gradient in such a way that the Kelvin body force in the medium produces a net unbalanced axial component. This causes a thermomagnetic pumping action, transporting the ferrofluid in the capillary tube from the colder end to the warmer end. Performance of the thermomagnetic pump is investigated experimentally to characterize the pump pressure head and discharge under different working conditions, namely, the magnetic field strength, heating power, and ferrofluid properties. A comparison with two other field actuation pumps at comparable length scales is also presented. The pump produces higher output at lower power supplies and magnetic field compared to the other two pumps.  相似文献   

7.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

8.
The concept of using magnetic particles (seeds) as the implant for implant assisted-magnetic drug targeting (IA-MDT) was analyzed in vitro. Since this MDT system is being explored for use in capillaries, a highly porous (ε∼70%), highly tortuous, cylindrical, polyethylene polymer was prepared to mimic capillary tissue, and the seeds (magnetite nanoparticles) were already fixed within. The well-dispersed seeds were used to enhance the capture of 0.87 μm diameter magnetic drug carrier particles (MDCPs) (polydivinylbenzene embedded with 24.8 wt% magnetite) under flow conditions typically found in capillary networks. The effects of the fluid velocity (0.015–0.15 cm/s), magnetic field strength (0.0–250 mT), porous polymer magnetite content (0–7 wt%) and MDCP concentration (C=5 and 50 mg/L) on the capture efficiency (CE) of the MDCPs were studied. In all cases, when the magnetic field was applied, compared to when it was not, large increases in CE resulted; the CE increased even further when the magnetite seeds were present. The CE increased with increases in the magnetic field strength, porous polymer magnetite content and MDCP concentration. It decreased only with increases in the fluid velocity. Large magnetic field strengths were not necessary to induce MDCP capture by the seeds. A few hundred mT was sufficient. Overall, this first in vitro study of the magnetic seeding concept for IA-MDT was very encouraging, because it proved that magnetic particle seeds could serve as an effective implant for MDT systems, especially under conditions found in capillaries.  相似文献   

9.
In this work, the thickness effect of Fe52Co48 soft magnetic films with in-plane anisotropy on static and microwave magnetic properties was investigated. The hysteresis loop results indicated that the static in-plane uniaxial anisotropy field increased from almost 0-60 Oe with increasing film thickness from 100 to 540 nm and well-defined in-plane uniaxial magnetic anisotropy can be obtained as the thickness reached 540 nm or larger. Based on Landau-Lifshitz-Gilbert (LLG) equation, the microwave complex permeability spectra were analyzed and well fitted. The LLG curve-fitting results indicated that the initial permeability increased from 106 to 142 and the resonant frequency was shifted from 4.95 to 4.29 GHz as the film thickness was varied from 540 to 1500 nm. Moreover, it was found that there was a discrepancy between the static and the dynamically determined anisotropy field, which can be explained by introducing an additional effective isotropic ripple field. The decreased ripple field was suggested to result in a significant decrease of damping coefficient from 0.109 to 0.038.  相似文献   

10.
This paper presents a numerical investigation of the hydro-thermal behavior of a ferrofluid (sea water and 4 vol% Fe3O4) in a rectangular vertical duct in the presence of different magnetic fields, using two-phase mixture model and control volume technique. Considering the electrical conductivity of the ferrofluid, in addition to the ferrohydrodynamics principles, the magnetohydrodynamics principles have also been taken into account. Three cases for magnetic field have been considered to study mixed convection of the ferrofluid: non-uniform axial field (negative and positive gradient), uniform transverse field and another case when both fields are applied simultaneously. The results indicate that negative gradient axial field and uniform transverse field act similarly and enhance both the Nusselt number and the friction factor, while positive gradient axial field decreases them. It is also concluded that, under the influence of both fields by increasing the intensity of uniform transverse field the effect of non-uniform axial fields decrease.  相似文献   

11.
When a magnetic fluid is subjected to a magnetic field, a part of the magnetic particles in the fluid agglomerates to form chains. Thus, the ferrofluid becomes optically anisotropic. In this work we describe optically observed patterns in some magnetic fluid films in applied parallel magnetic fields and optical effects of these, especially the optical transmittance. The most interesting experimental observation is that concerning the time dependence of relative transmittivity . For kerosene base ferrofluids relax rapidly at coupling and decoupling magnetic field, but for a transformer-oil magnetic fluid the relaxation times can attain (5–10) minutes, depending on the intensity of applied magnetic field.  相似文献   

12.
Magnetic nanocomposites are obtained by the self-assembly in water of polypeptide-based di-block copolymers polybutadiene-b-poly(glutamic acid) combined with hydrophobic γ-Fe2O3 nanoparticles. These hybrid supramolecular objects are either—(3D) spherical micelles filled with a hydrophobic ferrofluid at a concentration as high as 45 vol% or—hollow vesicles with a (2D) magnetic membrane. In this last case, the organic amphiphile copolymers are able to confine the hydrophobic nanoparticles within the thin layer of polybutadiene blocks. We probe these objects by atomic force microscopy, by small-angle neutron scattering (SANS) and by light scattering. Furthermore, anisotropic SANS data bring the experimental evidence of the capability to modify the shape of the mineralized membranes in response to a magnetic field intensity as low as 290 G.  相似文献   

13.
Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1–1.2) pa s at constant shear rate of 20 s−1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s−1 to 150 s−1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.  相似文献   

14.
A novel photonic crystal fiber sensing theory filled with magnetic fluid is proposed based on the change of the MF refractive index under varied magnetic field. The magnetically induced tuning of the magnetic fluid filled PCF propagation properties were investigated by the full-vector finite element method with a perfectly matched layer. Theoretical calculations show that both the effective refractive index and the effective mode area increase vs. the increased magnetic field, and the PCF filled MF with larger d/Λ is more sensitive to magnetic field. When the wavelength λ = 1550 nm, the duty ratio d/Λ = 0.9, d/Λ = 0.6, the effective refractive indexes increase respectively from 1.598279 to 1.617572, from 1.61948 to 1.632484, and the effective mode areas increase respectively from 3.561115 μm2 to 7.052360 μm2, from 6.167494 μm2 to 37.221998 μm2 as the magnetic field changes from 25 Oe to 175 Oe. This scheme provides theoretical foundation to use magnetic field to control light in photonic crystal fiber and also offers a potential method for magnetic field sensing based on the TIR-PCF.  相似文献   

15.
A study of a diester based Fe3O4 ferrofluid has been made over a wide temperature range, 4.2 K < T < 380 K, using static magnetic and ac susceptibility measuring methods. Analysis of the data yields information on the anisotropy constant, grain size distribution and clustering of the particles in the ferrofluid.  相似文献   

16.
Optical detection of the frequency-dependent magnetic relaxation signal is used to monitor the binding of biological molecules to magnetic nanoparticles in a ferrofluid. Biological binding reactions cause changes in the magnetic relaxation signal due to an increase in the average hydrodynamic diameter of the nanoparticles. To allow the relaxation signal to be detected in dilute ferrofluids, measurements are made using a balanced photodetector, resulting in a 25 μV/√Hz noise floor, within 50% of the theoretical limit imposed by photon shot noise. Measurements of a ferrofluid composed of magnetite nanoparticles coated with anti-IgG antibodies show that the average hydrodynamic diameter increases from 115.2 to 125.4 nm after reaction with IgG.  相似文献   

17.
Fe-Pt thin films were deposited by rf sputtering on an MgO substrate heated at different temperatures to induce the formation of the perpendicular Fe-Pt L10 phase with a different grain morphology on the nanometer scale. All films are characterized by a mazelike pattern of FePt nanograins with interconnected bases. MFM images and magnetization curves indicate that all samples have a strong perpendicular magnetic anisotropy arising from (0 0 1) growth. The temperature behaviour of the electrical resistance indicates that a percolating path exists for conduction electrons in the mazelike pattern. The magnetoresistance was measured as a function of magnetic field (applied longitudinally) and temperature in the ranges −70 kOe<H<+70 kOe and 4 K<T<150 K, respectively. All samples display a complex behaviour of the electrical resistance as a function of applied field. The role of the different magnetoresistance effects (both intrinsic and extrinsic) measured in these FePt thin films is elucidated.  相似文献   

18.
Anomalous magnetization processes and non-symmetrical domain wall displacements in the minor loop of L10 FePt particulate films were investigated by magnetization measurements and in situ magnetic force microscopy. Magnetization (M) decreases dramatically on increasing the magnetic field to ∼3 kOe after which M becomes small and constant in the range of 5–20 kOe as observed in the successive measurement of minor loops. The domain wall displacement is non-symmetrical with respect to the field direction. The anomalous magnetization behavior was attributed to the non-symmetrical domain wall displacement and large magnetic field required for domain wall nucleation. Energy calculations from modeling suggest that non-symmetrical domain wall displacement is caused by the existence of metastable domains in which the domain edges are stuck to the particle boundaries.  相似文献   

19.
We have studied by the electron-spin resonance (ESR) and static magnetic field techniques, the La2/3Ba1/3MnO3 perovskite, which was previously shown to exhibit a martensitic phase transformation in the vicinity of Ts∼200 K [Physical Review B 68, 054109 (2003)], leading to its structural phase-segregated state. Resonant absorptions reveal that in the temperature interval from 100 K to 340 K the compound represents a mixture of two ferromagnetic phases possessing different magnetizations, in varying proportions depending on the temperature, and a small amount of a paramagnetic phase. The results agree well with the previous neutron diffraction study. Applied in the ESR experiments, magnetic fields (2–6 kOe) strongly affect the magnetization curves: even magnetic field as high as 700 Oe modifies the anomaly in the phase transformation region and removes the difference between the zero-field cooled and field-cooled magnetization curves, which implies that the difference in the magnetic susceptibility of the coexisting phases is small and the magnetic domain configuration can be easily changed.  相似文献   

20.
A ferrofluid (FF) was synthesized in air using a co-precipitation method. Some rheological properties and magnetoviscous effects of this sample were studied. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterization of the solid particles, and the rheological properties were investigated with a special rheometer with variable magnetic field. Magnetic particles with mean particle size of 10.6 nm were obtained. Rheological results show that the shear thinning behavior in the absence and presence of magnetic field is different from that based fluid behavior. Moreover, contrary to expectation, the magnetoviscous effect showed an initial increase at low shear rates (near 15 s−1) and decrease at higher shear rates. The rheological properties of FF depend on the rearrangement of nanoparticles. In addition, time is an effective factor in the formation and destruction of magnetically induced structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号